Chapter 17 ®
Performance Characteristics for Sparse o
Matrix-Vector Multiplication on GPUs

Sarah AlAhmadi, Thaha Muhammed, Rashid Mehmood, and Aiiad Albeshri

17.1 Introduction

High-performance computing techniques can effectively enhance the performance
of sparse linear equation systems, which have Sparse Matrix-Vector multiplication
(SpMV) as the most important scientific computation unit [1]. Numerous important
scientific, engineering and smart city applications require computations of sparse
matrix-vector multiplication (SpMV) [2-6]. SpMV is a core computing part of
many scientific and engineering applications such as finite element methods,
signal processing, magneto-hydrodynamics, graphics processing, electrical power
systems, data mining, graph analytics, and information retrieval [1, 7-11]. The
widespread importance of sparse matrix computation has become research hotspots
and brought about significant research endeavors into implementations based on
modern-day parallel processors, mainly GPUs [1, 7, 10, 12, 13]. However, there are
many challenges in computing SpMV such as the differences in sparsity patterns,
that make such computations difficult.

The irregularities of sparse patterns result in a number of matrix representation
issues [10]. Thus, there exists diverse sparse matrix storage layouts intended to
exploit various sparsity designs and distinctive techniques for getting and manip-
ulating matrix entries especially on GPUs. Direct or indirect improvements in data
layout and data access pattern are solutions to obtain high throughput or indirect
improvements. Furthermore, the SpMV performance is affected by the parallel
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computing device platform being used [10]. SpMV algorithm that achieved good
performance in one parallel device platform may not be as efficient as on other
platforms due to the difference of the architecture and capabilities between the
platforms.

This research will explore the SpMV and Jacobi iterative methods on GPUs
with the aim to understand the performance bottlenecks and possibly address the
limitations of the existing approaches. In Sect. 17.2, an overview of SpMV and
Jacobi iterative techniques are provided. Section 17.3 explores the GPU architecture
and performance characteristics of applications on GPU along with techniques
to optimize the performance of SpMV. In Sect. 17.4, we explore the important
storage formats for SpMV computations on GPU architecture. Finally, in Sect. 17.5
we analyze and discuss the performance of the notable storage formats using the
identified performance characteristics and criterions.

17.2 SpMYV and Iterative Methods

Sparse Matrix-Vector product (SpMV) is the most important process in scientific
computing and engineering applications [1, 7, 8, 12, 14—17]. The performance of
SpMV can be improved using parallel computing [1, 15, 16]. Sparse matrix is
a matrix that have mostly zeros and very few non-zero elements [12, 17]. The
processing of such matrices involves removal of the zeros elements to deal with
just the non-zero (nnz) elements. The challenges involved in computing SpMV
are numerous. Some of the major challenges are irregularity of the matrices, data
transfer between host and device, load imbalance among the threads, memory
access, and memory management (storage formats) [1, 7-9, 12, 14-17].

Iterative methods consist of a sequence of computations performed iteratively
to produce approximate solutions that gradually reaches the accurate solution.
They are, furthermore, partitioned into stationary methods (i.e., Jacobi) and non-
stationary methods (i.e., conjugate gradient) like [17, 18]. In this work our attention
will be on the stationary methods specifically the Jacobi iterative methods. Jacobi is
an excellent candidate to be implemented on GPU although it is slower than other
iterative methods, since it’s inherently parallel.

Linear systems which have formula Ax = b can be solved using Jacobi method
as follows in each iteration compute Ax = b as matrix-vector product, then test for
convergence, and repeat until convergence. It involves partitioning of the matrix A
into three parts: diagonal, upper-triangular, and lower-triangular portions [9, 19].
Thus, in matrix terms, the Jacobi method can be expressed as in Eq. (17.1):

f=D '@+ '+ D 7.1
where k denotes the number of iterations, D is the diagonal entries, L is the lower-

triangular matrix, and U is the upper-triangular matrix. Figure 17.1 depicts the
Jacobi iterative technique and the SpMYV involved. Many researchers have attempted
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Fig. 17.1 Algorithm for k=0
Jacobi iterative method while not convergence do
depicting the SpMV for i = 1 to n
operations involved %; =0
for 3 =1 ton
if j#i
Xi = Xi + ai,§ * x5k
end
end
x:i ¥ = (bi - x3) /ai,i
end
k=k + 1
end

to improve the performance of iterative methods for sparse linear equation systems
and SpMV computations [2, 17, 18, 20-27].

17.3 GPU: An Overview

In this section, we provide a brief overview of the general GPU architecture. We
further discuss the GPU characteristics that affect the computational performance
of the GPU and discuss various optimizations that enhance the performance.

17.3.1 Architecture

In the recent decade, GPUs are considered as a general-purpose processing unit
instead of a mere graphics processing unit [7, 12, 28, 29]. GPU has attracted
HPC researchers and has become popular in scientific computing due to its
high computation capabilities, massive performance, effective usage of memory
bandwidth, and the ability to accelerate existing large systems which have been
implemented on other processors like CPU [7-9, 14, 30, 31].

Thus, GPUs become an important platform to implement sparse matrix compu-
tation to accelerate the performance of SpMV multiplication by processing them
parallelly [8, 14, 15, 32]. Hence, many researchers have developed and optimized
the existing algorithms to get best utilization out of these devices. Their speed
can reach to Teraflops for single-precision calculations and half of this value for
double-precision processing [9, 12]. Understanding GPU architecture is important
for efficient utilization of the resources. However, the architectures are different
for different GPU generations such as Kepler, Fermi, GeForce, PASCAL, and
VOLTA. Different GPU families have been designed for different purposes such as
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GeForce for graphics computation [33] and Tesla P100 for datacenters acceleration
[34]. They differ largely on the parallel computing capabilities they have, thus
the throughput performance delivered vary. Pascal, for example, is currently the
most powerful architecture design for GPU. It turns a normal computer into a
supercomputer and provides remarkable performance [33]. Tesla P100 belongs to
the PASCAL family and it delivers a double-precision floating point about 5.3
TFLOPS, while Tesla V100 which belongs to the VOLTA architecture reaches to
7 TFLOPS [35, 36]. For all Nvidia versions among the last two decades along with
its purposes, see [37]. A discussion on the Tesla P100 architecture can be seen in
[34] and for Kepler architecture refer [33]. In addition to the architecture of the
device, the selection of the best storage format for a given input matrix is a key
issue [9, 12, 15].

Working with GPUs involves working with a heterogenous platform consisting
hierarchies of computational units and memories. Figure 17.2 shows the different
types of memories on such platforms and Fig. 17.3 shows the hierarchy of memory
and computations on GPU. In general, GPU consists of an array of Streaming
Multiprocessors (SM) that contains processing cores, and many types of memories
such as registers and cache. The programming model for the GPU is single
instruction multiple data (SIMD) applied into groups of 32 threads called warps.
In subsequent sections, we further discuss about warps and its effects on the
performance of SpMV.

Compute Unified Device Architecture (CUDA) is an API dedicated to GPU
programming [38]. It depends on the C language and presents new possibilities for
accelerating GPU kernels. Further, CUDA is developed to simplify and improve
GPU programming and accelerating high-performance parallel computations [1, 7,

thread
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Per-thread
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memory
Kernel 2
Thread Per-block .
block Al threads

Fig. 17.2 Types of memory on heterogeneous platform
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Fig. 17.3 Memory and computation hierarchies on GPU

38, 39]. CUDA views GPU as a grid of blocks where each block has a set of threads.
The grid of blocks can be organized either as one-, two-, or three-dimensional
computing units. A 2D grid example can be seen in [33].

17.3.2 Performance Characteristics: Discussion

The features that affect the performance of computations on GPUs can be broadly
classified into three: (1) Execution configuration, (2) Memory throughput, and (3)
Instruction throughput. In the following subsections, we discuss these performance
characteristics in detail.

Execution Configuration These are the parameters that need to be configured at
execution to improve the performance of GPU computations. The major execution
configurations are:

1. Active warps (Resource usage): Registers and shared memory are critical
components and need attention because it affects the number of active warps
which in turn affects the GPU utilization. When the number of active warps is
maximum, the GPU utilization is at maximum. The number of active warps can
be maximized by good management of compute resources, registers, and shared
memory. Reducing the number of registers utilized by a kernel results in higher
warps being processed simultaneously. And when a thread block consumes more
shared memory, fewer thread blocks are processed simultaneously by an SM. If
the amount of shared memory used by each thread block is reduced, then more
thread blocks can be processed simultaneously.

2. Occupancy: Occupancy is having enough warps to keep the device completely
occupied. It is the ratio between active warps and maximum number of warps.
We can compute occupancy by dividing the maximum number of threads per
SM by 32. We can check it using CUDA occupancy calculator or the nvprof
profiler. “To enhance the occupancy, the thread block configuration needs to be
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resized or the resource usage needs to be readjusted to permit more active warps
simultaneously and improve utilization of compute resources.”

3. Memory operations: Load and store operations on the data should be measured
to find the efficiency of the operation.

Memory Throughput Efficient utilization of the theoretical memory bandwidth of
the GPUs improves the computational performance. The bandwidth utilization can
be improved by considering the following factors:

1. Data Transfer between Host and Device: For the best performance of kernels,
data transfers should be minimized between the host and device whenever
possible and should be optimized by various techniques [40]. Moving more
code from host to device is an efficient way to optimize the transfer process. In
addition, every data transfer has an associated overhead, hence grouping many
small transfers into single transfer reduces the overhead associated with each
transfer and produces an overall better performance.

2. Memory Access: Memory access is an important factor that affects the overall
performance of GPU applications. GPU has many types of memory as shown in
Fig. 17.3. Scattered addresses in global memory need to be avoided; coalesced
and aligned access can overcome throughput reduction. Thus, to increase global
memory throughput, it is important to make the memory access transactions both
aligned and coalesced. Coalesced access occurs within a warp scope when all the
32 threads in a warp use one memory transaction; more precisely, they access
a contiguous chunk of memory [35]. Aligned access is to make sure the first
address of a device memory transaction is a multiple of the transaction size,
which usually has either 32, 64, or 128 bytes depending on the target device
characteristics [35, 40]. Figure 17.4 shows the different memory access patterns.

B . —
- i 1
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Coalesced memory access  Strided Memory Access  Random Memory Access

Fig. 17.4 Memory Access Patterns
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The best access pattern is the coalesced access while the worse is the random
access. As a rule, the more memory transactions required by a warp, the lower
the memory throughput which leads to lower performance.

Instruction Throughput This describes the instruction optimizations that lead to
the best performance. It can be summarized into three main perspectives as the
following:

* Arithmetic instructions: Avoiding instructions that cost many operations per
clock cycle such as mod operator. Avoid non-required conversions between
datatypes.

e Control Flow Instructions and Warp Divergence: Control flow instructions (if,
do, for, switch, while) can significantly impact the performance as it may cause
warp divergence problem which degrades the instruction throughput [40]. Warp
divergence occurs when the threads inside a warp have different execution paths.
This conflicts with the fact that the GPU is a single instruction multiple data
(SIMD) processor which would require all threads in a warp to execute one
instruction. More precisely, threads on GPUs are organized as warps and each
warp executes one instruction at a time for all threads inside that warp, each with
its private data (SIMD). When control flow constructs are assigned to a warp,
different branches might occur (e.g., some threads execute an if block when the
condition is correct while others execute else block when the condition is wrong),
which results in executing multiple instructions per warp. As a result, this process
will be serially executed which results in idle threads in a warp as only one
instruction will be executed at a time while next instruction will be loaded after
the current instruction is finished [35, 41]. In other words, the instructions will be
executed sequentially, thus the total number of instructions per warp increases.
So, for best performance we should avoid different execution paths within a warp.

* Synchronization: It impacts the performance because of two reasons [35]. The
first is the cost of the number of operations it requires (differs according
to compute capability of the target device) while the second is forcing the
multiprocessor to be idle while it is not required.

17.3.3 Performance Optimization Strategies

Performance optimization strategies according to [38] can be classified into three
main categories, parallelism optimization, optimization of memory throughput, and
optimization of instruction throughput. Each of these dimensions can be quantified
using several metrics which can be measured using tools such as NVIDIA visual
profiler, nvprof as command-line profiler tool, or by comparing the achieved
throughput of a kernel to the corresponding peak theoretical throughput of the
device to show how much improvement has been achieved by the kernel. The
dimensions with their metrics have been explained in Table 17.1. For example, we
can observe the memory operations in Nsight profiler using memory statistics menu.
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Table 17.1 Performance dimensions of GPU Kernels

Performance dimension Performance angles Helping metrics
Memory optimization ¢ Aligned access — gld_efficiency
¢ Coalesced access — gst_efficiency
¢ Data transfer between host |— gld_transactions
and device

— gst_transactions
— gld_throughput
— gst_throughput

Instruction throughput ¢ Instruction throughput — branch_efficiency
e Warp divergence — inst_per_warp
— warp_execution_efficiency
Execution configuration e Occupancy — achieved_occupancy
optimization

e Tune grid blocks size

Also, memory transaction metrics (e.g., gld_transactions and gst_transactions)
can act as indirect indicators to measure the coalesced accesses. Higher memory
transactions indicate a high probability of uncoalesced access. List of CUDA
performance metrics collected by the nvprof can be found on [40].

17.3.4 Performance Optimization: Discussion

Looking for best kernel performance requires tuning multiple performance factors.
It can be likened as a puzzle board that needs to compose many pieces to get
a complete picture. We should look at different angles using multiple metrics to
build better combination of performance aspects and get the best performance.
However, there are possibilities of conflicts between these performance aspects that
may degrade the overall performance even if we achieve high scores for individual
factors. For example, getting more occupancy does not ensure the best performance,
we can find that in some cases, low occupancy also has provided higher performance
because there are other factors affecting the overall performance, for example,
memory operations. In the same manner, getting high memory throughput does not
equate to the best performance due to low efficiency these operations might have.
As a matter of fact, memory efficiency is very important aspect to consider. It can
be improved by changing the thread/block configuration. In general, there are some
good tips for better configuration, keeping the block size always a multiple of the
warp size (i.e., 32) and launching more blocks by setting the second dimension
(block.y) to 1 to reduce the block size and obtain more blocks to launch. This will
enhance the inter-block parallelism [35].

Therefore, enhancing the performance of GPU kernels can be done on multiple
levels. One level might be focusing on exposing more parallelism by managing the
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used resources such as registers and shared memory, or by controlling the occupancy
(higher level of active warps at any given time) or any other aspects on this level
as explained on previous section. Memory access management is another level to
looking for. Optimization memory access to ensure coalesced and aligned access
can immensely enhance the performance. The last level that we can work on is
enhancement of instruction throughput by avoiding warp divergence or avoiding
costly arithmetic operations such as mod operator. All these are examples and each
level represents a separate field of optimizations. We can optimize on one level or
more to find a good balance to get the better performance. Thus, looking for best
GPU performance is a complicated process and requires checking the kernel from
many angles and it does not depend on just a single metric.

17.4 SpMYV Storage Formats and Computation Techniques

Data structures are a core aspect when dealing specially with SpMV and GPUs
[8]. They have a strong impact on the performance of the algorithms that are
used to solve SpMV [7-9, 15]. It represents the storage pattern of the input
matrices in the memory and is responsible in providing the best data access [9,
14]. Numerous efforts have been made to improve storage formats specifically for
SpMV on GPU and other architectures for iterative linear solvers on GPUs since
sparse matrices show up in many applications which involve diverse computational
patterns [16]. Accordingly, various storage formats have been proposed to facilitate
the productivity and recovery of important information from the input matrix. The
most prominent formats are the CSR, Coordinate format (COO), DIA, and ELL
[39, 42]. In addition, some adaptation have been made to these basic formats such
as CSRS5 [43] and CSRNS [7], along with other hybrid Schemes [1, 8-10, 31, 42,
44]. CSR scheme is preferred always among comparable formats and it has been
chosen because it is widely adopted, general-purpose storage format, and gives
minimum memory accesses [7-9, 15, 16]. Furthermore, all prior storage formats
are considered explicit while there are other storage schemes such as MTBDDs [45]
which are considered implicit formats [17].

In this research, we have included our performance analysis on CSR, COO, ELL,
DIA, HYB, and CSRS5 schemes. The descriptions of these formats along with their
analysis are explained in the next section.

17.5 Performance Analysis of Notable Sparse Storage
and Computation Techniques

In this section, we explore several research efforts for SpMV optimization on GPU
over the last years. We first describe how each scheme store the data and then
we have defined the issues and limitations of each scheme. We have classified the
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techniques according to the basic SpMV formats they are derived from. The basics
storage formats are COO, CSR, ELL, DIA, and HYB.

17.5.1 Sparse Storage and SpMV Kernels: Qualitative Analysis

In the following subsection, we discuss some of the notable sparse formats and
associated SpMV techniques [39, 44]:

Fig. 17.5 Original matrix

The Coordinate (COQ) format is the most basic data structure to store a sparse
matrix. It is made of three arrays: Row, Col, and Data to store the row indices,
the columns indices, and the values of non-zero components, respectively.

The Compressed Sparse Row (CSR) format is the most well-known format
for sparse matrix storage. It comprises three arrays: RowPtr, Col, and Data to
store row pointers to the offset of each row, indices of non-zero components, and
values of non-zero components, respectively.

The ELLPACK (ELL) structure stores a sparse matrix in two arrays: Data and
Col. The array Data stores the values of non-zero components while Col array
stores the columns indices of each non-zero component.

The Hybrid ELL/COO (HYB) structure stores the greater part of non-zero
components in ELL format and the rest of the non-zero components in COO. All
non-zero components at the columns on the left of a threshold value are stocked
in the ELL and the rest non-zero components are represented as COO format.
CSRS proposed by [43] is an optimization of CSR format and it combines
segmented sum technique for better load balance and compressed row data for
better load/store operation efficiency. It is insensitive to sparsity structure of
the input matrix. The matrix is partitioned into groups of 2D tails. These tails
require extra information indicating their start index and columns indices, named
as tail_ptr and tail_descriptor arrays, respectively. In addition, it has the CSR
arrays val, col., and ptr. Thus, we have totally row_ptr, col_idx, val, tile_ptr, and
tile_desc, where tile_desc further includes four arrays. tile_ptr works as row_ptr
on CSR and it stores the row index of the first entry in each tile. Tail_desc has four
different data structures, namely bit_flag, y_offset, seg_offset, and empty_offset
arrays. These four arrays denote the start of each row inside the tiles, the address
of the partial sum for each column, accelerating the segmented sum, and help the
partial sums to find correct locations in y if the tile includes any empty rows. The
illustrations of these schemes are shown in (Figs. 17.5, 17.6, 17.7, 17.8, 17.9 and
17.10).

onN O =
o O ~ O
O N = W
® o1 ©O O
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Fig. 17.6 CSR scheme Var Arl= [1 3412756 8]
Col Arr=[02120231 3]
Ptr Arr= [0 2 47 9]
Fig. 17.7 ELL scheme 13 « 02 «
4 1 « 12 «
Val_Arr= Col_Arr=
- 275 - 023
6 8 = 13
Fig. 17.8 DIA scheme « 1 + 3
4 1 =
Val_Arr= offset Arr=[ -2 01 2]
2 7 5 «
6 8 » =
Fig. 17.9 HYB scheme: ELL 13 02
and COO 41 12
Val_Arr = Col_Arr =
ELL - 27 - 02
6 8 18
Val_Arr = [5]
COO0 { Col Arr = [3]
Row_Arr=[2]
0 0 2 050
046000/ val= 4 5| col_index=|2 1 1| Tail_0
A-|000000 6 3 322
253007 727 552
010802| val=|1 9 6| col_index=|1 0 3| Tail_1
957670 857 314
mxn=6x6 nnz=18 w=3 0=3 no oftails=(18/2) =9

Fig. 17.10 CSRS scheme

The main issues that should be taken into consideration regarding these basic
formats are memory footprint in COO, coalesced access and thread mapping in
CSR, and zero padding in ELL. Further, we shall illustrate the limitations of
the selected techniques and analyze it with the performance evaluation criterion
for SpMV and compare it with the performance characteristics of GPU. This
comparison will show us the limitations of the existing techniques and how they are
restricted to a few perspectives from a pool of GPU’s performance considerations.

If we look at the performance criteria in each research, we can observe that
the performance aspects covered on each technique is incomplete. Most of them
focus on the speed of the technique while a few study the memory issues of their
algorithms and seldom take into consideration the utilization rate of the GPU such
as the occupancy rate of the device and the benefits from the massive parallelism
provided by the target GPU. Table 17.2 illustrates the detailed performance data
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for all the schemes discussed in this article and discusses the performance aspect
considered in each research.

CSR and CSR Optimizations The main drawback of the scaler CSR (one thread
per row) is the uncoalesced access of the data and indices arrays [1]. To rectify this
issue, a vector CSR version is proposed (a warp per row) [1]. In addition, CSR is
widely used for various types of sparse matrices, this flexibility introduces thread
divergence problem especially for those sparse matrices with a variable number of
non-zeros per row [1, 16]. This likely will cause many threads within a warp to be
idle while waiting for the thread with the longest data to process. These drawbacks
have been overcome by CSR vector version, but the performance of this version is
strongly sensitive to the row size of the target matrix such that it is inefficient when
rows have few non-zeros.

ELL and ELL Optimizations ELL accomplishes high performance on regular
matrix structures (i.e., with an equivalent number of non-zeros on each row) [39,
46]. However, on irregular matrices unavoidably it leads to memory footprint
inefficiency and misuse of computation (i.e., short rows make their thread inactive
for most of the time) results in load imbalance. The granularity of ELL SpMV on
GPU is one thread per row. Nevertheless, it implicates potential space wastage
with the way that all rows are zero-padded to length Nma.x. Subsequently, this
configuration is most productive when the variance of non-zeros among rows is
small [10].

AdELL+ SpMV kernel proposed by [46] is an improvement of ELL format and
it is also kind of hybrid format that combines ELL and CSR. It outperforms the
comparable kernels in terms of speed of execution measured on GFLOPS for both
regular and irregular matrices. They have discussed memory bandwidth but without
comparison with others, so we cannot decide about amount of improvements done
on this point. They also have measured memory footprints compared with CSR
structure and it has achieved less footprints than CSR.

HYB Single storage configuration only provides the best performance only in
limited situations which gave birth to the idea of hybrid formats. HYB format, for
example, is the first hybrid format consisting of COO and ELL formats to overcome
the sensitivity to the sparsity structures in both ELL and COO. It successfully
achieved good performance and is considered as one of the best formats especially
on the unstructured matrices. However, it has higher costs including high level
of data organization, has complicated program logic, and costs time in terms of
memory transfer [12].

SHEC [10] is another segmented hybrid format that consists of ELL and CSR
(vector version). They combine the advantage of ELL granularity (i.e., one thread
per row) and CSR granularity (i.e., one warp per row). SHEC is intended for further
improvements on the throughput of SpMV and specially to lessen the memory
footprint on GPUs.

Another hybrid scheme has been proposed in [13] which combines DIA with
the ELLPACK structure. This combination isolates the diagonal elements of the
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sparse matrix using the DIA scheme while the residual elements are stored in
ELLPACK format. This is immensely beneficial for iterative methods, specifically
Jacobi iteration because it uses the diagonal values in its calculation, so the isolation
on the proposed format will give faster access to the diagonal elements. However,
the performance is limited compared to ELLPACK and it is highly efficient for those
matrices having a relatively dense diagonal band [13].

CSRS5 [43] have been introduced as a storage format that is based on segmented
CSR. The authors considered computation intensity factor to measure their perfor-
mance compared with others. It significantly improves the load imbalance problem
that CSR suffer from. CSRS is a complex storage format and requires several arrays.
These arrays involve more memory access operations (many load operations) and
large memory space to load this information which may affects the total memory
efficiency. Poor resource management lead to less GPU utilization since it effects
number of blocks and warps working concurrently which subsequently affects rate
of the device occupancy. Furthermore, the memory bandwidth measurements are
not provided and the technique is not space efficient due to the large number of
arrays used. In addition to its complexity, CSRS5 has significant overheads due to the
preprocessing process such as the matrix transpose operations and transformation
from CSR val and col arrays into CSRS arrays

17.5.2 Performance Comparison

Table 17.2 compares the six considered SpMV kernels which are CSR (scalar
vector), COO, DIA, ELL, HYB, and CSRS5. The comparison is in terms of the
used GPU device, peak theoretical values of performance and memory bandwidth,
and the achieved performance and memory throughput. In addition, we provide
the name of the matrix benchmark suites used in the experiments. Some have
used wide variety of real application matrices derived from finite element method-
based modeling, linear programming, circuit simulation, and connectivity graphs
from partial web crawls. It should be noted that the notable CSR version is CSR
scalar which has granularity of one thread per row. The comparison includes several
experiments from different studies of the selected structures. In this article, we
have considered experiments of double-precision computations and unstructured
matrices excluding single-precision and structured matrices except for DIA and ELL
schemes. We have considered the structured matrices for DIA and ELL because
they are dedicated for such matrices. GFLOPS refers to performance throughput.
The calculation for single-precision and double-precision flops are different. The
formula to calculate the peak value of double precisions is given in Eq. (17.2).

2 x [multiply add] x [#of multiprocessors/8] x [processor clock/1000] (17.2)

m.thaha.h@ieee.org



422 S. AlAhmadi et al.

Table 17.2 Comparison of SpMV Kernels

144.1 27 224 -

GFLOPS Memory bandwidth
Obtained Effective
Peak GFLOPS Peak memory | bandwidth
Tech. name Device GFLOPS (MAX) bandwidth (MAX)
(COO 1990) [37] GTX 280 ([35] @ 77.76 4 141.7 58
GTX 285 [38] @ 88.56 5 159.0 -
(CSR Scalar 1990) | GTX 280 [35] | 77.76 4 141.7 55
[37]
GTX 285 ([38] @ 88.56 4.2 159.0 -
GTX 980 [39] | 144.1 18 141.7 -
(ELL 1985) [37] GTX 280 ([35] @ 77.76 13.5 141.7 140
GTX 285 ([38] @ 88.56 15 159.0 -
(DIA 1989) [37] GTX 280 ([35] @ 77.76 16.7 141.7 141
GTX 285 ([38] @ 88.56 18.2 159.0 -
(HYB 2008) [35] GTX 280 ([35] @ 77.76 14 141.7 141
GTX 285 [38] @ 88.56 15.7 159.0 -
GTX 980 [39] | 144.1 15 -
1

(CSR5 2015) [39] GTX 980 [39

The peak GFLOPS discussed in this article is either calculated using Eq. (17.2) or
from the device specifications given on the website, or is mostly reported in various
researches. The obtained performance throughput measures the number of floating
point operations per second, and it is calculated by dividing the required arithmetic
operations by the average execution time [42]. Peak memory bandwidth is clearly
defined on the device specifications, otherwise it can be calculated using Eq. (17.3).

(Memory clock x Bus Width/8) x GDDR type multiplier 17.3)

GDDR multiplier values vary according to memory type. For GDDR3, GDDRS,
and GDDRS5X, it is 2, 4, and 8, respectively. Division by 8 is to change from bit to
byte. Effective bandwidth is defined as the total number of bytes written/read by all
threads divided by the average execution time [42].

In [39], they have implemented the basics formats for structured and unstructured
matrices with single and double-precision computations. In addition, they have
considered experiments with and without cache. They have considered the GPU
performance measured in GFLOPS as well as memory bandwidth measured in GB/s
as performance aspects. They have evaluated the performance results using single
and double-precision floating points and measured the performance enhancement.
However, they do not consider peak performance and peak memory bandwidth
to measure the achievable performance compared with device capabilities. If we
compare the achieved results with the peak values, we observe they have lower
performance compared to the device capabilities as stated in Table 17.2.

In [39, 42], they have the same experiments on different devices with slight
enhancements as compared to [42]. SpMV is a memory-bounded computation and
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hence they did not achieve the peak performance of the used devices [10, 39, 46-48].
More precisely, if we study the performance characteristics that have been discussed
in Sect. 17.3 for the selected kernels we can observe many limitations. Coalesced
memory access, for example, is a difficult issue on sparse matrix computations
because different storage schemes require many pointers that point to the address
of the first element of the blocks, slices, and individual rows. However, the need
for these addresses mean the need for more arrays (at least one beside the data
array) which would result in loading more arrays into the device global memory.
This would increase the memory transactions which may degrade the performance
if the accessing pattern is not coalesced. Furthermore, instead of a single array,
all the arrays should have a coalesced access to ensure better performance. COO,
DIA, ELL, and HYB formats are fully coalesced [1]. On the other hand, CSR does
not provide a coalesced access either for the data array nor to the other arrays.
CSRS supports memory coalesced access by accessing the data and column arrays
in column-major order instead of row-major order as seen in the classic CSR.

Warp divergence is another performance characteristic and likely to occur on
CSR. It results in load imbalance between threads; however, it is significantly less
in CSRS5 by dividing the elements into fixed-size tails. Moreover, other performance
aspects such as instruction throughput, occupancy, block-thread heuristics, number
of resources used, and other performance aspects are not considered. For the best
performance and device utilization we should include a combination of perfor-
mance characteristics to evaluate the performance which most researches lack of.
Furthermore, the properties of GPU architecture included in the experiments have
significant impact on the achieved performance as we have seen in our comparison.
However, even with different GPU devices, the achieved SPMV performance is low
as compared to the high throughput each device can provide.

17.6 Conclusion

In this chapter, we discussed the performance of SpMV on GPU architectures.
We provided an architectural overview of GPU devices and defined the per-
formance dimensions of GPU computations. We explored the performance of
a few major existing sparse matrix storage formats. We concluded that there
is lack of performance aspects considered during the evaluation of the existing
SpMYV algorithms, specifically to measure the memory throughput achieved by the
SpMV computations. Since SpMV computations are memory-bound, the achieved
performance should be compared to the peak theoretical bandwidth of the GPUs. We
conclude that to achieve better performance analysis a combination of performance
aspects/criterion should be noted. In addition, the performance of SpMV on different
GPU device architecture varies. Hence, a comprehensive and standard set of
performance characteristics need to be used by the researchers while comparing
and analyzing SpMV on GPUs.
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