
Chapter 18
HPC-Smart Infrastructures: A Review
and Outlook on Performance Analysis
Methods and Tools

Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri, and Fawaz Alsolami

18.1 Introduction

High-performance computing (HPC) plays a vital role in driving transformations
across various smart-city infrastructures such as healthcare, agriculture, environ-
ment, and other infrastructures [94]. It is a vital cog in autonomous adaption of urban
infrastructure to various events and stimuli (e.g., severe hurricane, high traffic due to
accidents). HPC is a major component in developing phenomenal computationally
intensive models for various smart-city infrastructures.

Driving high efficiency from shared-memory and distributed-memory HPC
systems have always been challenging. Big data and HPC convergence, system
heterogeneity, cloud computing, and many other developments have increased the
complexities of HPC systems [36, 51, 77, 108, 124]. There are increasing pressures
on energy efficiency for developing exascale computers and therefore development
of highly efficient HPC applications and systems has become essential.

Various performance analysis tools exist that help in improving the performance
and efficiency of HPC scientific applications and increase their potential. Per-
formance analysis is a crucial part in the development of the HPC applications.
Performance optimization is not just identifying the bottlenecks in the code but
also identifying the causes of bottlenecks and the required changes that need to
be made to the parallel applications [99]. This requires more advanced tools such
as hardware performance counters. Diagnosing the problems manually requires

T. Muhammed (�) · A. Albeshri · F. Alsolami
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: m.thaha.h@ieee.org; aaalbeshri@kau.edu.sa; falsolami1@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: rmehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_18

427

m.thaha.h@ieee.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_18&domain=pdf
mailto:m.thaha.h@ieee.org
mailto:aaalbeshri@kau.edu.sa
mailto:falsolami1@kau.edu.sa
mailto:rmehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_18


428 T. Muhammed et al.

deep knowledge about the architecture, hardware of the system, and the compiler.
Performance analysis is important to determine the different optimization strategies
for the same application on different HPC platforms such as GPU, MIC, cloud, and
MPI-based grids.

Corresponding to debugging and testing, performance analysis and optimization
of HPC applications are vital stages in the development cycle. It is a crucial
condition for assuring efficient use of costly and limited resources. The performance
analysis phase evaluates the actual performance (speed of computation, throughput,
and resource consumption) on a given platform with regard to memory, storage,
network, and runtime. Moreover, it has to identify improvements and reduction in
the usage of resources.

This paper reviews the performance analysis tools and techniques for HPC
applications and systems. The contributions of this article can be summarized
below.

1. A review of the tools for the performance analysis of HPC applications. The
works on the HPC performance analysis are numerous and we do not claim to be
exhaustive in this paper.

2. A discussion on the performance of various HPC applications on a number of
HPC platforms.

3. A discussion on the common HPC applications used by the researchers and HPC
benchmarking suites for analysis.

4. A qualitative comparison of various tools used for the performance analysis of
HPC applications is provided.

5. A discussion on the future research directions and issues.

The rest of the paper is organized as follows. Section 18.2 describes various
Benchmark toolkits and various HPC applications that are used for the performance
analysis. Section 18.3 presents existing work by various researchers in analyzing
the performance of various HPC applications. Section 18.4 provides a qualitative
comparison of various tools used for HPC application performance analysis. Future
research issues and directions are provided in Sect. 18.5. Finally, Sect. 18.6
concludes the paper.

18.2 HPC Applications and Benchmarking Suites

In this section, we discuss various HPC-based applications from various domains
which are prone to performance problems. Table 18.1 summarizes various HPC
applications that are used in various application domains. We shall discuss some
major domains in which HPC is a necessity and is used abundantly.

– Automobile and Aeronautics: This field has a lot of simulation and modeling,
model prediction and verification including probabilistic modeling, computer
aided drawing, graphic designing, design automation, the design of structures,

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 429

Table 18.1 A summary and comparison of commonly used HPC applications

Application Domain Language Developers OS Open

BigDFT Chemistry F90 Genovese et al. [42] Li/Un Yes

Bifrost Atmosphere F90 Gudiksen et al. [46] Li/Un No

ChaNGa Cosmology Charm++ Jetley et al. [55] Li/Un Yes

COSMO Weather C++ CINECA Li/Un Yes

CORSIKA Astrophysics F77/F90 Heck et al. [50] Li/Un No

ECHAM/MESSy Environment F77/F90 Jöckel et al. [57] Li/Un No

EUTERPE Fusion C++/C Saez et al. [110] Li/Un No

Gamess Material Science F77 Schmidt et al. [45, 112] Li/Un No

IBM WATSON Graph Analysis C++ IBM Li/Un No

IMPACT-T Math. modeling F90 Qinag et al. [107] Li/Un Yes

Jacobi2D Math. modeling Charm++ – Li/Un Yes

LIBMESH Math. modeling C/C++ Kirk et al. [64] Li/Un Yes

MAESTRO Astrophysics F90 Nonaka et al.[100] Li/Un Yes

MILC Quantum Theory C/C++ Bailey et al. [20] Li/Un Yes

MP2C Particle collision F90 Freche et al. [39] Li/Un No

NAMD Chemistry Charm++ Bhatele et al. [23] Li/Un Yes

NQueens Backtracking C/C++ – Li/Un Yes

OpenFOAM Fluid dynamics C++ Jacobsen et al. [54] Li/Un Yes

Paratec Quantum theory C/C++ Pfrommer et al. [104] Li/Un No

PEPC Gravitation F2003 Gibbon [44] Li/Un Yes

ProFASI Protein structure C++ Irbäck et al. [52] Li/Un No

PRISM Probab. modeling Java/C Kwiatkowska et al. [72] Li/Win Yes

Quantum expresso Molecular structure F90 Giannozzi et al. [43] Li/Win Yes

SIMONA Nano science C++ Strunk et al. [116] Li/Un No

SMMP Protein structure F90 Meinke et al. [90] Li/Un Yes

SPECFEM3D Wave propagation F90/C Dimitri et al. [67] Li/Un Yes

Sweep3D Material science F77 Wylie et al.. [128] Li/Un Yes

YALES2 Combustion C++/F90 Moureau et al. [91] Li/Un No

WIEN2K Chemistry F90 Schwarz et al. [113] Li/Un No

Li Linux, Un Unix, Win Windows

automated plan building, analysis of design, and concrete modeling [66, 73, 98,
130].

– Astrophysics and quantum physics: A lot of applications based on physics,
especially on quantum physics and astrophysics, has very large computations as
they receive a large input data. Load balancing of spin-image algorithm on CPU
and MIC has been studied in [22, 34].

– Biosciences: Biosciences including bioinformatics have a large number of
programs that require computation including the mathematical modeling of
diseases. It also has issues with memory management. See, for example, [7].

– Earth sciences: A large number of earth related activities such as earthquake
prediction, monitoring, weather prediction, and prediction of climate change due

m.thaha.h@ieee.org



430 T. Muhammed et al.

to global warming needs high computation [61, 109]. These applications are
highly data intensive and take days to run on serial machines.

– Electronics: The design and analysis of electronic components have a high
computation due to the simulation and modeling before the actual produc-
tion [117, 129]. Other things include the static timing analysis and lithography.

– Material sciences: Material science includes modeling of nanoscale particle,
the modeling behavior of nanoscale particle, and modeling of molecules and
chemical reactions [2, 74]. These require a lot of computation and memory.

– Computational fluid dynamics (CFD): CFD is used to model the flow of fluid
around and within an object by solving mathematical equations governing the
flow with the help of numerical methods. It is an inter-disciplinary domain
and has applications in multiple domains. Complex flow phenomenon can be
simulated with CFD. However, it requires massively parallel supercomputers to
run the simulations efficiently and effectively [41, 105].

– Graph computations: Graphs are extensively used combinatorial tools in
computing. They are used for representing sparse matrices, assist load balancing
in computations [16], model molecular structures, traffic networks [16], and
social media networks [8, 119], and distribution networks. It is also used in
bioinformatics, business-analytics, and city planning. As graphs grow larger in
size, we require powerful computational techniques for effective processing.

– Computational and artificial intelligence (AI): AI has become a fundamental
technique for developing smarter algorithms and solutions in all scientific
computations domains. Training deep learning and machine learning-based
models require large computing power. For example, AI in healthcare networked
systems [95] and educational systems [88] provides a better quality of service
(QoS) and experience to the users. Deep learning has also been used to forecast
traffic conditions for smart cities [14], and there are numerous other applications
of AI, machine and deep learning. Probabilistic methods have also been used for
computational intelligence, see, e.g., [71, 80] and the references therein. Solution
of sparse linear equation system is an important part of such computational
intelligence techniques. Solving sparse linear equation system mainly consists of
sparse matrix vector multiplication which requires efficient utilization of parallel
devices and this is discussed next.

– Linear algebra and matrix computations: A large number of scientific
domains require linear algebra and matrix computations, such as dense or sparse
matrix matrix multiplications (MMM), dense matrix vector products (MVPs),
and sparse matrix vector products (SpMV) [3]. Application of HPC for dense
linear algebra (MVP/MMM) can be seen in [17, 122, 123]. Work on efficiently
utilizing parallel devices for SpMV can be seen in [11, 12, 69, 70, 79–82, 85, 86].

– Big data: Big data refers to “the emerging technologies that are designed to
extract value from data having four vs characteristics; volume, variety, velocity
and veracity” [87]. Big data technologies are being used in many application
areas that require HPC to address big data challenges, see, e.g., [5, 83, 88, 95,
118, 119]. There are many ongoing efforts on the convergence of HPC and big
data [36, 108, 124].

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 431

Table 18.2 A summary and comparison of benchmarking suites for HPC applications

Name Developers Benchmark type Supports Language

DEISA EUS Real apps Cloud+MPI C

HPC challenge bench-
mark

DARPA Micro MPI+OpenMP C

Iometer Intel I/O All network environ-
ments

C++

LINPACK Dongarra et. al. Kernel MPI+OpenMP Fortran

NAS parallel bench-
mark (NPB)

NASA Kernel MPI C/C++

NPB multi-zone(NPB-
MZ)

NASA Kernel MPI+OpenMP C/C++

PARSEC Princeton Univ. Kernel Multi-threaded SMA C/C++

PerfKitBenchmarker Google Kernel Cloud environment Python

PMaC HPC SciDac PERC Micro MPI+OpenMP C++

Rodinia Kevin Skadron Real apps CUDA/OpenMP C/C++

STREAM UOV Kernel MPI C++/F90

VMmark VMware Virtual machine Virtual machines &
cloud

C/C++

– Smart Cities, societies, and infrastructure: Smart cities are driven by the
rapid advancements in ICT technologies. These ICT developments have given
rise to the integration and convergence of digital and physical systems such
as computing, communications, big data, transport, healthcare, and city opera-
tions [6, 8, 10, 15, 16, 63, 83, 84, 89, 94, 95, 111, 118, 119, 124]. See, e.g., [88]
for background on smart cities and societies.

Researchers have used applications from the discussed domains to study the
performance of these applications in high-performance environments. Several works
analyze the performance of applications from discussed domains using various
known benchmarks. Table 18.1 lists some of the important applications that use
HPC and Table 18.2 provides some of the major benchmarks used. Performance
analysis tools have been used to analyze the applications to detect the bottlenecks
in the code. We shall discuss these tools in later sections along with the review of
earlier research.

18.3 Performance Analysis of HPC Applications: Literature
Review

18.3.1 Performance Analysis Metrics (Theoretical)

Carrington et al. [27] analyze the metrics used for evaluating the performance
of HPC applications. They mainly evaluate a simple synthetic metric, a linear

m.thaha.h@ieee.org



432 T. Muhammed et al.

combination of various single metric with weights. They also test a metrics derived
by convolving an application transfer function with the system performance data
obtained using any one single simple metric which is also known as predictive
metrics. The authors evaluate the performance of ten Department of Defense high-
performance computing modernization applications (HPCMP) [31]. Of the ten
selected application, five of the applications are workload dependent and the other
five are workload independent. Each of these ten applications was run on ten target
systems with a distinct architecture. The simple benchmarks such as LINPACK [31],
STREAM [78], and HPC challenge [76] have a weak correlation to performance
and hence the authors additionally use synthetic benchmarks in combination with
prediction and performance modeling framework [48]. A transfer function is applied
to the test result by the prediction model that enables the representation of multiple
categories using one single metric. In the simple metric scheme, the metric from a
single benchmark is used, whereas in predictive benchmark they use a set of single
benchmark metrics along with a real-time trace of the application. Simple metrics is
modeled as follows:

T ′(A,B) = L(A)

L(Ao)
· T (Ao, B) (18.1)

where T ′(A,B) is the predicted clock time for application B on system A, L(A) is
the result for a specific single benchmark for system L, Ao denotes the base system
benchmark, and T (A,B) is the measured wall clock time for A on B. The errors
reported are calculated as

% Error = T ′(A,B) − T (Ao, B)

T (A,B)
(18.2)

For predictive metrics, the authors use a tracer such as MetaSim tracer [28] for
dynamic tracing of the base station and synthetic probes are used for measuring
the rates for each operation on a target system. The MetaSim convolver [114]
divides the execution operation count by operation rate to achieve execution type
for current basic block per operation. After experimentation, the authors conclude
that the correlation between the metric and real-time performance is higher than
simple metrics.

18.3.2 HPC on the Clouds

Gupta et al. [47] provide an evaluation and comparison between the performance
of HPC applications on the cloud and on traditional HPC systems such as super-
computers and clusters. They also answer questions such as which HPC application
is suitable for cloud, when is it suitable to choose cloud to run HPC application,
and what application can be run on the cloud. The authors grade the performance

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 433

of a number of selected applications on a number of the platform including
supercomputer, a different type of clouds and clusters. The authors recognize
various bottlenecks and the correlation between the characteristics and performance
of the HPC application. The authors use three different benchmarks to analyze the
performance of the HPC application. These are NAS parallel benchmark [97], a
benchmark based on MPI [75], and a benchmark based on Charm++ [60]. The
following systems were used to test the applications:

– Ranger supercomputer
– Taub (an HPC optimized cluster)
– Open Cirrus (physical nodes with commodity Interconnect)
– Private cloud
– Public cloud
– Amazon EC2-CC cloud

They ran the following HPC applications on the above machines:

– Jacobi2D
– NAMD [23]
– ChaNGa [55]
– Sweep3D [128]
– NQueens

The authors made three observations based on running the above HPC application
on all the machines discussed above:

1. Some application scaled really well on all platform

(a) Applications such as Jacobi-2D and NQueens scaled well on all the cores.

2. Scaling only till 32 cores on private cloud

(a) NAMD and ChaNGa show this behavior. This is the effect of virtualization
of the network.

3. Variable runtime for HPC applications on different execution in clouds

(a) The variability was seen to increase when increasing the scaling.

The authors used various MPE, Jumpshot [131], and Projection tools to trace the
HPC applications communication characteristics. On analyzing the communication,
the authors have come to a conclusion that communication performance is a major
bottleneck. They also conclude that virtualization decreases the performance of
an HPC application. This is due to the presence of high latency and reduction in
bandwidth. It was also observed that there are random idle times which the authors
attribute to interference by other systems. The authors also reach a conclusion on
the variability of the running time of HPC application. They say that it is due to the
coupling of heterogeneous components in hardware and due to sharing of the virtual
machines by external users.

m.thaha.h@ieee.org



434 T. Muhammed et al.

Jackson et al. [53] discuss the performance analysis of HPC applications on the
cloud. They compare conventional high-performance computing platforms such as
supercomputers to Amazon EC2 cloud using HPC applications. The authors use the
NERSC benchmarking framework [29, 32, 49, 75, 96, 101–103, 125] to evaluate
the performance of HPC applications on Amazon EC2. In addition to NERSC, they
also use integrated performance monitoring (IPM) framework. This framework will
provide us with details on the time spent by the application on computation and on
networking. They use four machines for this evaluation. The first of such machine is
called Carver, which is a four hundred node cluster, which belongs to Lawrence
Berkeley National Laboratory. It uses a quad-core Intel Nehalem processor @
2.67 GHz. Each node has twenty-four GB of RAM. The second machine to be
tested is Franklin which is a CrayXT4 supercomputer consisting of 9660 nodes.
It has a single AMD Budapest processor @ 2.3GHz. The third system to be tested is
Lawrencium which is a Linux cluster that has 198 nodes and the third system is the
Amazon EC2 cloud. For testing purposes, they used four compute units of Amazon
where one compute unit is equal to 1.2 GHz of Xeon 2007 processors. Normally all
of the traditional HPC has a shared parallel file system that between the master nodes
and the slave nodes. This is recreated in the cloud environment using virtual clusters
[38, 40, 62]. A number of python scripts were used to configure the master node and
the slave nodes. The master node would submit the jobs to the slave nodes using
MPI and the file system will be shared between the nodes. The shared file system
is implemented with the help of elastic block store [13] device which is attached
to the virtual machine. The ext3 file system was used in this disk. Eight different
HPC applications were evaluated by the authors from the benchmarking suite. These
applications are (1) the community atmosphere model, (2) the general atomic and
molecular electronic structure system, (3) GTC, (4) IMPACT-T, (5) MAESTRO, (6)
MILC, (7) PARATEC, and (8) HPCC. Sustained system performance [68] for each
of these applications was computed based on the NERSC benchmark as follows:

SSP = N

(
M∏

i=1

Pi

)(1/M)

(18.3)

where Pi is the performance figure in gigaflops per second per core, N is the
number of computational cores. Basically, SSP is the geometric mean of Pi overM
applications multiplied by N . It was observed that Lawrencium and Amazon EC2
were the worst performers in terms of computation. Moreover, the network latency
is very poor in both of these systems. It was observed that EC2 was 20 times worst
performer than the penultimate worst performer. The memory access in the EC2
platform is 10 times slower than the next worst performer Lawrencium. Totally the
results indicate that the network has a very high impact on the performance of HPC
applications on the cloud.

Roberto et al. [35] analyze the performance of HPC applications on the cloud.
They analyze major performance bottlenecks in cloud platform using Amazon
EC2 cluster [33] computing environment. Amazon provides two cluster computing

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 435

instances named CC1 and CC2. CC1 consists of two quad-core processors whereas
CC2 consists of two octa-core processors. They are made keeping in mind the
requirement of HPC applications and high network using applications [25]. The
authors evaluate 64 instances of CC1 and 32 instances of CC2, which sums up to
a total of 512 cores. NAS parallel benchmark suite [19] and NPB multi-zone suite
[56] are used for evaluation. Both of these cluster instances use Xen hypervisor for
virtualization. The input–output is managed by paravirtual drivers that improve the
performance as compared to normal clouds. OpenMPI [92] and MPICH2 [93] are
used as the messaging middleware for codes using C/C++. Whereas, for Java-based
code they use FastMPJ [120]. Initially, they performed a micro-benchmarking of
data transfer from one point to another. They analyzed data transfer between both the
inter-cluster and intra-cluster. Micro-benchmarking was conducted using Intel MPI
benchmarks suite [126]. Then they analyzed the performance of the HPC kernels
especially the effects on scalability due to paravirtualization. This was performed
using NAS parallel benchmarks. Then they analyze the suitability of the amazon-
based cloud networks for HPC application execution. The metrics they consider
are millions of operation per second (MOPS). From the inter-VM communication
analysis, it was found that OpenMPI and FastMPJ had lower start-up latency than
MPICH2 but still as compared to an application running on barebones hardware
these values are not enough. The results in the octa-core cloud were better than
the performance of quad-core cloud. Still the major bottleneck is the delay in
networking due to the para-virtualized access of the virtual machines of the cloud.
In the Intra-VM data transfer, we only use the shared memory and does not use the
network infrastructure and hence it was observed that it was better than Inter-VM
performance. In this case, the latency was as low as 0.3 and 0.45 μs on both CC1 and
CC2. In CC2, it is slightly higher due to the higher clock frequency of CC2. It was
observed that cache hierarchy influences the performance of shared memory in both
the cluster instances. HPC kernel analysis was performed using Fourier transform,
integer sort, and conjugate gradient applications from the NPB kernels. It was
observed that the scalability is higher if shared memory was used for data transfer
but the moment the application was run on Inter-VM the performance dropped. The
analysis reveals that the para-virtualized access of the network interface card by
the cloud results in higher start-up latency which limits the scalability of the HPC
applications that use intensive communication. The authors conclude that the major
bottleneck in running HPC applications in cloud is the communication bottleneck
of the cloud due to para-virtualized access of the network interface card by the
cloud platform. It has also concluded that CC1 has better scalability than CC2 even
though CC2 has higher computational power. If the performance to cost ratio is
compared, then CC1 is better than using CC2. The scalability can be increased
by running a single process per VM so that shared memory is used instead of
network infrastructure. Multiple levels of parallelism have been shown to increase
the scalability and performance such as multi-threading with message passing.

Waseem et al. [4] propose a framework for porting scientific applications to
between heterogeneous clouds.

m.thaha.h@ieee.org



436 T. Muhammed et al.

18.3.3 Performance Analysis Tools

Burtscher et al. [26] propose a tool for analyzing the performance of HPC
applications. It consists of an advanced engine behind a highly usable GUI for
bottleneck analysis. In an application, for each procedure, class, and loop it can
analyze core, socket, and other bottlenecks. It then provides a brief evaluation
and the steps required to remove that specific bottleneck including strategies to
optimize the performance of the code. PerfExpert removes the need to have in-
depth knowledge about computer architecture to optimize the HPC code. They
also present a new metric for measuring the performance called as LCPI, which
stands for local cycles per instruction. It is a combination of measurements from
performance counters and architectural parameters. Since the local values for each
loop are computed, procedure, and class they call it local CPI. For each procedure,
loop, and class it calculates the CPI. It also returns the contribution of the following
operations to the CPI: (1) memory access data, (2) memory access by instruction,
(3) data TLB access, (4) instruction TLB access, (5) FP operations, and (6) branches
in loops. It has fifteen performance counters to measure the overall LCPI and the
LCPI associated with the six operations discussed above. It also calculates the upper
bound of the latency caused due to the six operations discussed above. Some of the
major performance counters provided by PerfExpert are L1 and L2 cache access by
both data and instruction, total cycles and instruction in the HPC code, L2 cache
miss by both data and instruction, instruction and data TLB miss, branch prediction
and operations such as floating point addition, subtraction, and multiplication. These
LCPI parameters are combined with various system parameters to find important
bottlenecks. This can be used to restrict the conceivable causes of bottlenecks. For
example, the contribution of a branch statement to the LCPI is given by

(BR_NS ∗ BR_latency + BR_MSP ∗ BR_misslat)/T OT _INS (18.4)

where BRINS is the total branch instruction, BRMSP indicates the branches
missed, and T OT INS is the total instructions in the HPC code. BRmisslat is
the miss prediction latency by the CPU and BRlatency is the latency of branch.
PerfExpert runs HPCToolkit [30] under its hood. The HPC code is run by the
PerfExpert multiple times over the HPCToolkit. It saves the data from various
performance counters to a file. The data is then accessed by PerfExpert to find
out the bottlenecks in the code. On the basis of the analysis, it will then provide
optimization suggestions for the code.

Knupfer et al. [65] discuss a toolset for evaluating the performance of HPC
applications called the Vampir toolset. The Vampir toolset mainly consists of three
components. They are (1) VampireTrace, (2) a set of visualization tools named
Vampir, and (3) Vampir server. VampireTrace is an application tracer for HPC
applications. Tracing an HPC application requires Instrumentation which is the
modification of the application being traced to detect various events occurring.
VampireTrace provides four different kinds of instrumentation, namely compiler

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 437

instrumentation, source to source instrumentation, library instrumentation, and
manual instrumentation. These modifications are performed at the build time of
application. Special flags are provided for the compiler to generate calls for
instrumentation. It supports a number of compilers such as GCC, Intel compiler
suite, IBM compiler suite, Sun compilers, and NEC compilers. The major disad-
vantage associated with this technique is the large size of the trace file that is
generated. Source to source instrumentation is used by Vampir to instrument the
MPI application. Library instrumentation replaces the existing libraries of the HPC
application with the libraries required for instrumentation. The major advantage of
this technique is that without compiling and link frequently. The disadvantage of
this technique is that it requires that all the APIs be replaced by the new libraries.
Manual instrumentation is used to get more powerful control on what events need
to be traced and which events not. The Vampir toolkit can record the following
events.

1. Hardware performance counters: Can find out various performance parameters
such as statistics on cache performance, statistics on branch predictions, and
statistics on floating point operations.

2. Memory usage of the application: It can trace the memory usage of the HPC
application dynamically [59]. It replaces the normal memory functions such as
malloc, realloc, and free with special wrappers from the GCC compiler library.

3. Input and output activity tracking: Each and every input and output activity
performed by the HPC application can be traced by the VampireTrace by
intercepting the I/O calls made by the application.

4. Performance counters defined by the users: The users can define a number of
performance counters such as loop counts, results, or other scalar quantities.

Tracing can cause an overhead in the system which results in the performance
degradation of the HPC application and might alter the original characteristics of the
application. The overhead is introduced mainly at four places in the system, namely
the initialization phase, during event handling, during storage of tracing information
to disk, and during finalization. Vampir server is a client–server framework that
uses distributed systems for the evaluation of HPC application evaluation. We use
a parallel production environment as the server and the clients can be desktop
computers connected remotely for envisaging the performance graphically. The
graphical client enhances the understandability of the system by showing graphical
results of the evaluation. It provides various graphical timelines of the application
execution. The timelines consist of a global timeline that shows the timeline of all
process and threads, a summary timeline that provides the process that is involved
with various activity over a period of time. The other two timelines provided are the
counter timeline and the process timeline. The counter timeline shows the state of
counters with respect to time. Other than timeline display it also provides various
statistical displays such as the summary chart, activity chart, message statistics, and
input–output statistics. The authors conclude that it is a robust tool that provides a
good analysis of HPC applications.

m.thaha.h@ieee.org



438 T. Muhammed et al.

Wolf et al. [127] discuss SCALSCA toolset that has been specially designed
to analyze the performance of high-performance parallel applications. It provides
a complete runtime summaries and provides insight into the application behavior
through various techniques such as tracing and measuring various parameters. It
has been designed to be used with large end HPC systems such as IBM blue gene.
SCALASCA can identify uneven workloads and evaluate it. It can also detect wait
states that occur due to the above-mentioned phenomenon. SCALASCA can be
used for applications using OpenMP, MPI, and other hybrid applications written
in C/C++ and FORTRAN. It can be run on a wide range of platforms. SALASCA
is accessed using the command scales with various flags. Initially, before we start
the analysis the code to be analyzed has to be instrumented. By instrumentation,
it means that the code has to be modified to record and evaluate various events
related to the performance of the system. This process is automated in some
platforms whereas in some other platforms it has to be done manually. After this,
the instrumented code is run. After the run, there is the option to get the trace of
individual runtime events from which a GUI-based timeline representation can be
created. Alternatively, a profile that aggregates the performance of various events
and a summary report from it can be created. The second option provides an overall
summary whereas the trace provides a detailed information. The trace produces a
trace file that is used loaded into the memory for evaluation. During the evaluation,
it detects various events of significance. It performs a pattern analysis and provides
a report about this analysis. Both the pattern report and summary produced contain
various performance metrics that is useful for the user. The result of tracing can
also be analyzed by other third party tools. Some of the disadvantages of this are
that the trace analysis for OpenMP is done serially and the summary produced
has only metrics for OpenMP. The authors are improving it by incorporating more
functionalities. They are trying to come up with a workaround for the restrictions
imposed by the CUBE file format. The bottlenecks or the performance degradation
might occur at a later time than the time at which the actual event took place. They
are also trying to find a workaround for this issue.

18.3.4 Performance Analysis of Exascale Systems

Abraham et al. [1] discuss the possible performance evaluation of HPC applications
on exascale systems. Of all the HPC applications present, only a few HPC
applications are capable of exploiting even the petaflop systems [18]. The traditional
measurement-based evaluation on exascale system cannot be done because an
exascale system does not yet exist. The authors identify the challenges and provide
solutions for various problems that are faced when running an HPC application
on the exascale system including optimization of the code, formal modeling, and
static and runtime analysis. They also propose a conceptual framework for HPC
application performance analysis to run it on an exascale system. They try to
adapt the HPC application code to achieve good utilization of resources abstractly.

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 439

For this, they get the resource usage footprint of various modules at various
granularity. An abstract behavioral specification language to describe both the task
and deployment model can be used [58]. Also, the language should have big
parallel operators over big resource footprint [106]. A resource footprint can be
specified using the standard model in model driven development when the code
is developed from scratch. The authors also apply formal methods to the code,
unlike others who monitor the code and report various statistics regarding the
performance. They also provide the challenges faced at runtime analysis such as
the absence of a good tool to measure energy metrics with accuracy and given
time [9, 24]. Current runtime analysis includes runtime measurement like profiling
and tracing data [25]. This has many disadvantages such as manual changing of
code and ineffective improvement in performance. They also provide a conceptual
framework for designing HPC applications for exascale. The major components in
this framework can be summarized as follows:

– Use of domain specific exascale language (DSEL): This is useful for expressing
the non-functional aspects of execution.

– Scalable model-based analyzer (SMA): They are responsible for monitoring and
evaluating resource consumption.

– Exascale runtime data collector (ERDC): It performs functionalities such as data
mining, filtering, and data analysis.

– Autonomous feedback loop (AFL): AFL gets the feedback from the runtime that
is fed back into the model to tune the model.

Energy-Efficient Systems (Embedded Systems Nodes)

One of the major roadblocks for the adoption of exascale systems for HPC
computations is the energy consumption of exascale systems. A supercomputer
is not supposed to exceed 20 MW. We would require an efficiency of almost
fifty gigaflops (GFLOPS) per watt to build an exascale system below 20 MW.
To break through this barrier, we need to increase the efficiency of the current
systems by a factor of twenty-five, whereas in the embedded systems the energy
is of great importance. Therefore, one way to do this is to use the components used
in the embedded systems as analyzed by Stanisic et al. [115]. Stanisic et al. [115]
developed HPC clusters with the help of low-power embedded components and they
evaluate various existing HPC applications on this embedded platform. They study
the scalability of the existing HPC applications to the low-power embedded system-
based HPC clusters. They used eleven HPC applications to run on the low-power
HPC clusters. SPECFEM3D and BigDFT are the two major HPC applications used
by them. The authors have developed a board called snowboard which is a fully
embedded computer by itself. It uses a powerful ARM dual cortex A9 running at
1GHz. It has 8 GB of e-MMC memory. It has a full HD supported HDMI port
along with Mali 400 GPU. The power consumption of this board is just 2.5 W. This
board is compared with an Intel Xeon running at quad-core CPU at 2.6 GHz and has

m.thaha.h@ieee.org



440 T. Muhammed et al.

a power consumption of 95 W. Three benchmarks are used to compare these two
systems: (1)LINPACK, (2) CoreMark, and (3) StockFish. It was found that it takes
the same amount of energy on both platforms to run LINPACK but benchmarking
SPECFEM3D using CoreMark requires only less than 5 times of energy required
by Xeon. It was found out that the applications scale well for more than 90%
on the embedded low-power platform. The scalability is almost ideal when using
SPECFEM3D whereas BigDFT showed a lesser scalability. They further investigate
the performance of HPC application by analyzing the memory. For this, they run a
heavy memory rigorous kernel as shown in [121]. In this technique they measure
the time it takes to access the elements of a fixed size array inside a loop using
fixed steps. The memory bandwidth is calculated after running the above kernel.
It is the ratio of the total number of access that was required to access to the time
it took to execute the kernel. The memory structure of ARM is dissimilar to the
Intel architecture. Hence, different behaviors were observed. A large number of
cache miss was observed because for an array of size 32 KB the page allocation
was not consecutive. Moreover, the memory had to be frequently cleaned. The use
of real-time schedulers also resulted in the degradation of the HPC applications
performance which is caused by wrong decisions taken by the OS scheduler. A
variety of code optimization was done to HPC applications including changing
element size, unrolling of loop, etc. Increasing the size of variables as well as loop
rolling had optimistic results. There was quite an improvement in the performance
due to the doubling of the bandwidth. The authors conclude that more HPC code
optimization has to be performed to run HPC applications on low-power HPC
platforms.

18.4 Discussion and Analysis

In this section we shall provide a qualitative analysis and discuss the performance
analysis tools. Table 18.3 summarizes some of the major performance analysis tools
that have been reviewed in this paper.

Most of the researchers have run the HPC applications on the cloud to study
the feasibility of HPC applications on the cloud. References [21, 35, 47, 53, 120]
ran various HPC applications on the cloud. One of the major findings of all these
studies was that cloud as a platform does not scale well for HPC applications. One
of the major reasons for this non-scalability after a certain extent was due to the
network communication between the virtual machines. It scaled really well if the
application was run using a single VM. The reason for this is due to the virtualization
of the network interface card leads to degradation in the speed of the network.
Shared memory can be used to reduce the network communication to increase
the performance of the cloud-based application. The performance to cost ratio of
the clouds is also that enticing even though some packages offered do provide
the good cost to performance ratio as compared to other HPC platforms such as
grids, clusters, and supercomputers. From the discussion of various researchers, we

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 441

Table 18.3 A summary and comparison of various performance analysis tools for HPC applica-
tions

Features Vampir Suite PerfExpert Scalasca Periscope Kojak HPCToolkit

Auto-instrumentation Yes Yes Yes Yes Yes Yes

Bottlenecks Yes Yes Yes Yes Yes Yes

Data visualization Yes No Yes No No Yes

GUI Yes No Yes Yes No Yes

Language C++ C++/C C++/C C++/C C/F90 C++

Open source No Yes No No No Yes

Profiling Yes Yes Yes No No Yes

Restructure No Yes Yes No No No

Tracing Yes Yes Yes Yes Yes Yes

Timeline Yes No Yes No No No

conclude that the scalability of HPC applications on the cloud depends on a number
of factors such as network communication especially between the virtual and real
components. Combining message passing with multi-threading also increases the
scalability of the HPC applications on the cloud platform. HPC applications with
less communication and less interference sensitivity are suitable for the cloud. The
HPC applications have to be modified to make it cloud-aware.

Moreover, we need to consider the future wherein we have to efficiently use
the exascale systems. A major roadblock for this is the power consumption
and hence we found that HPC applications can also be executed on low cost
embedded hardware [115]. The MONT-BLANC project deals with analyzing the
performance of HPC applications on low-power embedded systems. It was observed
that it performs really well on embedded platform but had issues with real-time
scheduling and physical page application. A framework for exascale systems has
been developed by Ábrahám et al. [1]. This will be useful for modifying the HPC
application accordingly and in increasing their performance. Graphical processing
units (GPUs) are also among the highest power-efficient devices. A large number
of supercomputers in the Top500 list1 use GPUs. The Green5002 lists the top 500
supercomputers in the world by energy efficiency. Supercomputers with the highest
Flops/Watts ratio are ranked first in this list. GPUs are the accelerating unit for seven
supercomputers in the top ten in Green500.3

A number of performance analysis tools exist that help in analyzing the per-
formance of the HPC applications. A brief summary and comparison are provided
in Table 18.3. All of the tools provide profiling and tracing features. Profiling is the
feature where it would provide various global performance metrics. Tracing consists
of following the code in runtime and tracing the code. These actually require the

1https://www.top500.org/.
2https://www.top500.org/green500/.
3https://www.top500.org/green500/lists/2018/06/.

m.thaha.h@ieee.org

https://www.top500.org/
https://www.top500.org/green500/
https://www.top500.org/green500/lists/2018/06/


442 T. Muhammed et al.

modification of the code. This process of modification is called instrumentation.
All of them also provide instrumentation support at various levels. They help in
detecting the bottlenecks, but all of them do not give suggestion and where to change
the code and what code needs to be changed. An example of this is PerfExpert that
provides the complete details on code creating the bottleneck and the restructuring
required. But PerfExpert does not provide GUI support whereas others provide a
complete statistical information using charts, graphs, and timelines in which you
can zoom through various scales of timescale. The Vampir toolkit provides separate
timelines for the summary, counter, and various process. It also provides statistical
charts for various activities, message statistics, and I/O activities. SCALSCA is also
very similar to PerfExpert, but PerfExpert is open source whereas SCALASCA is
proprietary software.

18.5 Future Research and Issues

There are a lot of issues associated with analyzing the performance of HPC
application. We list some of the major issues and the direction of the required future
work.

– Most of the tools available are for the Linux platform. Hence, we need to port
various performance analysis tools to Windows platform

– There are a lot of redundancies when the application performs a trace. Eliminat-
ing redundancy in trace has to be done.

– Pattern detection in large datasets using complete call graphs [37].
– Applications that use single instruction multiple data (SIMD) consists of redun-

dancies in execution. It is required to replace these redundant behaviors with a
single instance which will result in higher performance and lesser memory.

– More case studies with more applications on more platforms are required.
– Expand current capabilities of the performance analysis tools by using counters

that are not based on performance.
– The performance analysis tools should automatically not only suggest solutions

for the bottlenecks but also automatically implement these into the code for all
kinds of bottlenecks.

– The performance analysis tools should also provide a higher level of input–output
optimization.

– The variability and the reduction of speed in clouds were attributed to the network
communication in the cloud. This issue of network delay has to be mitigated.

– Further improvement in the scalability of the performance analysis tools is
required.

– The OpenMP analysis in SCALASCA performance analysis tool has to be
parallelized.

– There are no existing tools to analyze the input–output in MPI, currently this is
performed by serial tracer in SCALASCA.

m.thaha.h@ieee.org



18 HPC-Smart Infrastructures: A Review and Outlook 443

– The current file formats that are used for the performance analysis provide a lot of
restrictions such as storing and processing of metrics that cannot be aggregated.
An efficient file system has to be developed.

– The bottlenecks that appear in the application might appear at a later time than
when the event that caused it occurs. The performance analysis tools should be
able to figure out the events that caused the issue in such occurrence.

– HPC applications have to be modified so that it performs efficiently in exascale
and petascale.

18.6 Conclusions

In this chapter, we reviewed the works on analyzing HPC applications and discussed
several performance analysis tools for HPC applications. The researchers observed
the performance of the HPC applications on various platforms and identified various
bottlenecks and issues related to the performance of the HPC application on parallel
platforms. Some researchers have discussed the usage of performance tools for
binding and replacing the bottleneck in the HPC applications. We also studied and
qualitatively compared various tools for performance analysis of HPC applications.
We discussed the performance of various HPC applications on a number of HPC
platforms. Moreover, we discussed various HPC benchmarking suites and various
HPC applications being used for the performance analysis and thereafter, we also
discussed the future research directions and issues.

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-651-611-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. Ábrahám, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit,
A.: Preparing HPC applications for exascale: Challenges and recommendations (2015). CoRR
abs/1503.06974. http://arxiv.org/abs/1503.06974

2. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs:
high performance molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1-2, 19–25 (2015). http://www.sciencedirect.com/science/article/
pii/S2352711015000059

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek,
P., Tomov, S.: Numerical linear algebra on emerging architectures: the plasma and magma
projects. J. Phys. Conf. Ser. 180, 012037 (2009)

4. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A
framework for faster porting of scientific applications between heterogeneous clouds. In:
Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. pp. 27–43. Springer International Publishing, Cham (2018)

m.thaha.h@ieee.org

http://arxiv.org/abs/1503.06974
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059


444 T. Muhammed et al.

5. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for
smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)

6. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 155–
168. Springer International Publishing, Cham (2018)

7. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: Dna profiling methods and tools: a
review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infras-
tructure, Technologies and Applications, pp. 216–231. Springer International Publishing,
Cham (2018)

8. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. pp. 98–110. Springer International Publishing,
Cham (2018)

9. Alonso, P., Badia, R.M., Labarta, J., Barreda, M., Dolz, M.F., Mayo, R., Quintana-Orti, E.S.,
Reyes, R.: Tools for power-energy modelling and analysis of parallel scientific applications.
In: 2012 41st International Conference on Parallel Processing (ICPP), pp. 420–429. IEEE,
New York (2012)

10. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 207–215. Springer International
Publishing, Cham (2018)

11. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on Intel
MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 306–322. Springer International
Publishing, Cham (2018)

12. Alzahrani, S., Ikbal, M.R., Mehmood, R., Fayez, M., Katib, I.: Performance evaluation
of Jacobi iterative solution for sparse linear equation system on multicore and manycore
architectures. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 296–305. Springer International Publish-
ing, Cham (2018)

13. Amazon: AWS | Amazon Elastic Block Store (EBS) - Incremental Backup & Persistent
Storage. http://aws.amazon.com/ebs/

14. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications,
pp. 139–154. Springer International Publishing, Cham (2018)

15. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Proc. Comput. Sci. 109,
1128–1133 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917311213.
8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017
and the 7th International Conference on Sustainable Energy Information Technology, SEIT
2017, 16-19 May 2017, Madeira

16. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 323–
336. Springer International Publishing, Cham (2018)

17. Azad, A., Ballard, G., Buluç, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S., Williams,
S.: Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication. SIAM J.
Sci. Comput. 38(6), C624–C651 (2016). https://doi.org/10.1137/15M104253X

18. Bader, D.A.: Petascale Computing: Algorithms and Applications. CRC Press, Boca Raton
(2007)

19. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks.
Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

m.thaha.h@ieee.org

http://aws.amazon.com/ebs/
http://www.sciencedirect.com/science/article/pii/S1877050917311213
https://doi.org/10.1137/15M104253X


18 HPC-Smart Infrastructures: A Review and Outlook 445

20. Bailey, J.A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, D., El-Khadra, A.X.,
Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, S., Heller, U.M., Kim, J., Kronfeld, A.S., Laiho,
J., Levkova, L., Mackenzie, P.B., Meurice, Y., Neil, E.T., Oktay, M.B., Qiu, S.W., Simone,
J.N., Sugar, R., Toussaint, D., Van de Water, R.S., Zhou, R.: Refining new-physics searches
in b → dτν with lattice QCD. Phys. Rev. Lett. 109, 071802 (2012). https://link.aps.org/doi/
10.1103/PhysRevLett.109.071802

21. Benedict, S.: Performance issues and performance analysis tools for HPC cloud applications:
a survey. Computing 95(2), 89–108 (2013)

22. Berriman, G.B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The application of cloud
computing to astronomy: A study of cost and performance. In: 2010 Sixth IEEE International
Conference on e-Science Workshops, December, pp. 1–7 (2010)

23. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V.: Overcoming scaling
challenges in biomolecular simulations across multiple platforms. In: IEEE International
Symposium on Parallel and Distributed Processing, 2008 (IPDPS 2008), pp. 1–12. IEEE,
New York (2008)

24. Bohra, A.E.H., Chaudhary, V.: Vmeter: power modelling for virtualized clouds. In: 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum
(IPDPSW), pp. 1–8. IEEE, New York (2010)

25. BPG: Best Practice Guides. http://www.prace-ri.eu/best-practice-guides/
26. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: PerfExpert:

an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11. IEEE Computer Society, Washington (2010)

27. Carrington, L.C., Laurenzano, M., Snavely, A., Campbell Jr., R.L., Davis, L.P.: How well can
simple metrics represent the performance of HPC applications? In: Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference, pp. 48–48. IEEE, New York (2005)

28. Carrington, L., Snavely, A., Wolter, N.: A performance prediction framework for scientific
applications. Fut. Gener. Comput. Syst. 22(3), 336–346 (2006)

29. Carter, J., Oliker, L., Shalf, J.: Performance evaluation of scientific applications on modern
parallel vector systems. In: High Performance Computing for Computational Science-
VECPAR 2006, pp. 490–503. Springer, New York (2007)

30. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.: Exploring
application performance: a new tool for a static/dynamic approach. In: Proceedings of the 6th
LACSI Symposium (2005)

31. Dongarra, J.L.A.P.: The LINPACK benchmark: past, present and future. Concurr. Comput.
Pract. and Exp. 15, 1–18 (2003)

32. Dunigan Jr, T.H., Vetter, J.S., White III, J.B., Worley, P.H.: Performance evaluation of the
Cray x1 distributed shared-memory architecture. Micro, IEEE 25(1), 30–40 (2005)

33. ECC2. Elastic Compute Cloud (EC2) Cloud Server & Hosting – AWS. //aws.amazon.com/
ec2/

34. Eleliemy, A., Fayez, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on parallel
heterogeneous architectures: Spin-image algorithm on CPU and MIC. In: 9th EUROSIM
Congress on Modelling and Simulation. EUROSIM (2016). http://edoc.unibas.ch/53117/

35. ExpóSito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance analysis of
HPC applications in the cloud. Fut. Gener. Comput. Syst. 29(1), 218–229 (2013)

36. Farber, R.: The convergence of big data and extreme-scale HPC (2018). https://www.hpcwire.
com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/

37. Ferreira, G., Kästner, C., Pfeffer, J., Apel, S.: Characterizing complexity of highly-
configurable systems with variational call graphs: analyzing configuration options interac-
tions complexity in function calls. In: Proceedings of the 2015 Symposium and Bootcamp on
the Science of Security. p. 17. ACM, New York (2015)

38. Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual clusters
for grid communities. In: Sixth IEEE International Symposium on Cluster Computing and the
Grid, 2006 (CCGRID 06), vol. 1, pp. 513–520. IEEE, New York (2006)

m.thaha.h@ieee.org

https://link.aps.org/doi/10.1103/PhysRevLett.109.071802
https://link.aps.org/doi/10.1103/PhysRevLett.109.071802
http://www.prace-ri.eu/best-practice-guides/
//aws.amazon.com/ec2/
//aws.amazon.com/ec2/
http://edoc.unibas.ch/53117/
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/


446 T. Muhammed et al.

39. Freche, J., Frings, W., Sutmann, G.: High-throughput parallel-I/O using SIONlib for
mesoscopic particle dynamics simulations on massively parallel computers. In: Parallel
Computing: From Multicores and GPU’s to Petascale Advances in Parallel Computing,
vol. 19, pp. 371–378. IOS Press, Amsterdam (2010)

40. Freeman, T., Keahey, K., Sotomayor, B., Zhang, X., Foster, I., Scheftner, D.: Virtual clusters
for grid communities. Citeseer (2006)

41. Gel, A., Hu, J., Ould-Ahmed-Vall, E., Kalinkin, A.A.: Modernization and optimization of a
legacy open-source CFD code for high-performance computing architectures. Int. J. Comput.
Fluid Dynam. 31(2), 122–133 (2017). https://doi.org/10.1080/10618562.2017.1285398

42. Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S., Méhaut, J.F.: Daubechies
wavelets for high performance electronic structure calculations: The BigDFT project.
Comptes Rendus Mécanique 339(2), 149–164 (2011). http://www.sciencedirect.com/science/
article/pii/S1631072110002135. High Performance Computing

43. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-
source software project for quantum simulations of materials. J. Phys. Condens. matter
21(39), 395502 (2009)

44. Gibbon, P.: Pepc: pretty efficient parallel coulomb-solver. Sonstiger Interner Bericht ZAM-
IB-2003-05, ZAM, Jülich, Forschungszentrum (2003)

45. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade
later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applica-
tions of Computational Chemistry, chapter 41, pp. 1167–1189. Elsevier, Amsterdam (2005).
http://www.sciencedirect.com/science/article/pii/B9780444517197500846

46. Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora,
J.: The stellar atmosphere simulation code Bifrost - code description and validation. Astron.
Astrophys. 531, A154 (2011). https://doi.org/10.1051/0004-6361/201116520

47. Gupta, A., Faraboschi, P., Gioachin, F., Kale, L., Kaufmann, R., Lee, B.S., March, V.,
Milojicic, D., Suen, C.: Evaluating and improving the performance and scheduling of HPC
applications in cloud. IEEE Trans. Cloud Comput. 4(99), 1–1 (2014)

48. Gustafson, J.L., Todi, R.: Conventional benchmarks as a sample of the performance spectrum.
In: Proceedings of the Thirty-First Hawaii International Conference on System Sciences,
1998, vol. 7, pp. 514–523. IEEE, New York (1998)

49. Gygi, F., Yates, R.K., Lorenz, J., Draeger, E.W., Franchetti, F., Ueberhuber, C.W., Supinski,
B.R.D., Kral, S., Gunnels, J.A., Sexton, J.C.: Large-scale first-principles molecular dynamics
simulations on the Bluegene/l platform using the Qbox code. In: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, p. 24. IEEE Computer Society, Washington
(2005)

50. Heck, D., Pierog, T., Knapp, J.: CORSIKA: An Air Shower Simulation Program. Astro-
physics Source Code Library (2012)

51. Hwu, W.M., Chang, L.W., Kim, H.S., Dakkak, A., El Hajj, I.: Transitioning HPC software
to exascale heterogeneous computing. In: Computational Electromagnetics International
Workshop (CEM), July 2015, pp. 1–2 (2015)

52. Irbäck, A., Mohanty, S.: Profasi: A Monte Carlo simulation package for protein folding and
aggregation. J. Comput. Chem. 27(13), 1548–1555. https://onlinelibrary.wiley.com/doi/abs/
10.1002/jcc.20452

53. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman,
H.J., Wright, N.J.: Performance analysis of high performance computing applications on
the amazon web services cloud. In: 2010 IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 159–168. IEEE, New York (2010)

54. Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the open-
source CFD library: Openfoam®. Int. J. Numer. Methods Fluids 70(9), 1073–1088. https://
onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726

55. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.: Massively parallel cosmological
simulations with ChaNGa. In: International Symposium on Parallel and Distributed Process-
ing, 2008 (IPDPS 2008), pp. 1–12. IEEE, New York (2008)

m.thaha.h@ieee.org

https://doi.org/10.1080/10618562.2017.1285398
http://www.sciencedirect.com/science/article/pii/S1631072110002135
http://www.sciencedirect.com/science/article/pii/S1631072110002135
http://www.sciencedirect.com/science/article/pii/B9780444517197500846
https://doi.org/10.1051/0004-6361/201116520
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20452
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20452
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726


18 HPC-Smart Infrastructures: A Review and Outlook 447

56. Jin, H., Van der Wijngaart, R.F.: Performance characteristics of the multi-zone NAS parallel
benchmarks. In: Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 2004, p. 6. IEEE, New York (2004)

57. Jöckel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J.: Technical note: the modular earth
submodel system (MESSy) - a new approach towards earth system modeling. Atmos. Chem.
Phys. 5(2), 433–444 (2005). https://www.atmos-chem-phys.net/5/433/2005/

58. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for
abstract behavioral specification. In: Formal Methods for Components and Objects, pp. 142–
164. Springer, New York (2012)

59. Jurenz, M., Brendel, R., Knüpfer, A., Müller, M., Nagel, W.E.: Memory allocation tracing
with VampireTrace. In: Computational Science–ICCS 2007, pp. 839–846. Springer, New
York (2007)

60. Kale, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented System Based
on C++, vol. 28. ACM, New York (1993)

61. Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates,
S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D.,
Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M.:
The community earth system model (CESM) large ensemble project: a community resource
for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol.
Soc. 96(8), 1333–1349 (2015). https://doi.org/10.1175/BAMS-D-13-00255.1

62. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science clouds: early
experiences in cloud computing for scientific applications. Cloud Comput. Appl. 2008, 825–
830 (2008)

63. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational
intelligence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 247–
257. Springer International Publishing, Cham (2018)

64. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel
adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3), 237–254 (2006).
https://doi.org/10.1007/s00366-006-0049-3

65. Kn̈pfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel,
W.E.: The Vampir performance analysis tool-set. In: Tools for High Performance Computing,
pp. 139–155. Springer, New York (2008)

66. Kodiyalam, S., Yang, R., Gu, L., Tho, C.H.: Multidisciplinary design optimization of a vehicle
system in a scalable, high performance computing environment. Struct. Multidiscip. Optim.
26(3), 256–263 (2004). https://doi.org/10.1007/s00158-003-0343-2

67. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional
seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999). https://onlinelibrary.
wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x

68. Kramer, W., Shalf, J., Strohmaier, E.: The NERSC Sustained System Performance (SSP)
Metric. Lawrence Berkeley National Laboratory (2005)

69. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations
arising from stochastic modelling. In: Hermanns, H., Segala, R. (eds.) Process Algebra
and Probabilistic Methods: Performance Modeling and Verification, pp. 135–151. Springer,
Berlin/Heidelberg (2002)

70. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution
method for Markov models. Electron. Notes Theor. Comput. Sci. 68(4), 589–604 (2002).
http://www.sciencedirect.com/science/article/pii/S1571066105803949

71. Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of
symbolic probabilistic model checking. In: Proceedings of the IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS ’04, pp. 123–130. IEEE Computer Society,
Washington (2004). http://dl.acm.org/citation.cfm?id=1032659.1034195

m.thaha.h@ieee.org

https://www.atmos-chem-phys.net/5/433/2005/
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1007/s00366-006-0049-3
https://doi.org/10.1007/s00158-003-0343-2
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x
http://www.sciencedirect.com/science/article/pii/S1571066105803949
http://dl.acm.org/citation.cfm?id=1032659.1034195


448 T. Muhammed et al.

72. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science,
vol. 6806, pp. 585–591. Springer, New York (2011)

73. Letherwood, M.D., Gunter, D.D.: Ground vehicle modeling and simulation of military
vehicles using high performance computing. Parallel Comput. 27(1), 109–140 (2001).
http://www.sciencedirect.com/science/article/pii/S0167819100000910. New Trends in High
Performance Computing

74. Lingerfelt, E., Endeve, E., Hui, Y., Smith, C., Somnath, S., Grodowitz, N., Borreguero, J., Bao,
F., Niedziela, J., Bansal, D., Delaire, O., Archibald, R., Belianinov, A., Shankar, M., Jesse,
S.: BEAM: an HPC pipeline for nanoscale materials analysis and neutron data modeling. In:
APS March Meeting Abstracts, p. A7.002 (2017)

75. Lusk, E., Huss, S., Saphir, B., Snir, M.: MPI: a message-passing interface standard (2009)
76. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner, R.,

Takahashi, D.: The HPC challenge (HPCC) benchmark suite. In: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, p. 213. Citeseer (2006)

77. Mantripragada, K., Binotto, A., Tizzei, L., Netto, M.: A feasibility study of using HPC cloud
environment for seismic exploration. In: 77th EAGE Conference and Exhibition 2015 (2015)

78. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance
computers (1995)

79. Mehmood, R.: A survey of out-of-core analysis techniques in stochastic modelling. Report
CSR-03-7, University of Birmingham (2003). https://www.researchgate.net/publication/
326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling

80. Mehmood, R.: Disk-based Techniques for Efficient Solution of Large Markov Chains. Thesis
(2004)

81. Mehmood, R.: Serial Disk-Based Analysis of Large Stochastic Models, pp. 230–255.
Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_7

82. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. UCAM-CL-TR-650. Report UCAM-CL-TR-650, University of Cambridge, Com-
puter Laboratory (2005). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf

83. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Proc. Comput. Sci. 64, 1107–1114 (2015). http://www.sciencedirect.com/science/article/
pii/S1877050915027015. Conference on ENTERprise Information Systems/International
Conference on Project MANagement/Conference on Health and Social Care Information
Systems and Technologies, CENTERIS/ProjMAN/HCist 2015 October 7-9, 2015

84. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manage. 22(6), 804–817 (2011). https://doi.org/10.1108/17410381111149657

85. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Report CSR-03-13, University of Birmingham (2003).
http://www.prismmodelchecker.org/bibitem.php?key=MPK03b

86. Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-
state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis,
and Simulation, pp. 293–302 (2006)

87. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review
and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning
the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015). http://
services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022

88. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

89. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence
of big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manage.
37(1), 75–104 (2017). https://doi.org/10.1108/IJOPM-03-2015-0179

m.thaha.h@ieee.org

http://www.sciencedirect.com/science/article/pii/S0167819100000910
https://www.researchgate.net/publication/326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling
https://www.researchgate.net/publication/326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling
https://doi.org/10.1007/978-3-540-24611-4_7
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf
http://www.sciencedirect.com/science/article/pii/S1877050915027015
http://www.sciencedirect.com/science/article/pii/S1877050915027015
https://doi.org/10.1108/17410381111149657
http://www.prismmodelchecker.org/bibitem.php?key=MPK03b
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
https://doi.org/10.1108/IJOPM-03-2015-0179


18 HPC-Smart Infrastructures: A Review and Outlook 449

90. Meinke, J.H., Mohanty, S., Eisenmenger, F., Hansmann, U.H.E.: SMMP v. 3.0-simulating
proteins and protein interactions in Python and Fortran. Comput. Phys. Commun. 178, 459–
470 (2008)

91. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex
geometries. Comptes Rendus Mécanique 339(2), 141–148 (2011). http://www.sciencedirect.
com/science/article/pii/S1631072110002111. High Performance Computing

92. MPI: Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/
93. MPICH: MPICH | High-Performance Portable MPI. http://www.mpich.org/
94. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based

smart city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 169–184. Springer International
Publishing, Cham (2018)

95. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Ubehealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–
32285 (2018)

96. Nakajima, K.: Three-level hybrid vs. flat MPI on the earth simulator: parallel iterative solvers
for finite-element method. Appl. Numer. Math. 54(2), 237–255 (2005)

97. NAS: NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html
98. Nielsen, E.J., Diskin, B.: High-performance aerodynamic computations for aerospace appli-

cations. Parall. Comput. 64, 20–32 (2017). http://www.sciencedirect.com/science/article/pii/
S0167819117300182. High-End Computing for Next-Generation Scientific Discovery

99. Niethammer, C., Gracia, J., Knüpfer, A., Resch, M.M., Nagel, W.E.: Tools for High
Performance Computing 2014: Proceedings of the 8th International Workshop on Parallel
Tools for High Performance Computing, October 2014, HLRS, Stuttgart. Springer, New York
(2015)

100. Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.: Maestro:
an adaptive low Mach number hydrodynamics algorithm for Stellar flows 188(2), 358–383
(2010). http://dx.doi.org/10.1088/0067-0049/188/2/358

101. Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S.: Scientific computations on modern par-
allel vector systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
p. 10. IEEE Computer Society, Washington (2004)

102. Oliker, L., Carter, J., Wehner, M., Canning, A., Ethier, S., Mirin, A., Parks, D., Worley,
P., Kitawaki, S., Tsuda, Y.: Leading computational methods on scalar and vector HEC
platforms. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 62.
IEEE Computer Society, Washington (2005)

103. Oliker, L., Canning, A., Carter, J., Iancu, C., Lijewski, M., Kamil, S., Shalf, J., Shan, H.,
Strohmaier, E., Ethier, S., et al.: Scientific application performance on candidate petascale
platforms. In: IEEE International Parallel and Distributed Processing Symposium, 2007
(IPDPS 2007), pp. 1–12. IEEE, New York (2007)

104. Pfrommer, B., Raczkowski, D., Canning, A., Louie, S.: Paratec (parallel total energy code),
Lawrence Berkeley national laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon,
C. Pickard and P. Haynes). www.nersc.gov/projects/paratec

105. Pérez, F.E.H., Mukhadiyev, N., Xu, X., Sow, A., Lee, B.J., Sankaran, R., Im, H.G.: Direct
numerical simulations of reacting flows with detailed chemistry using many-core/GPU accel-
eration. Comput. Fluids 173, 73–79 (2018). http://www.sciencedirect.com/science/article/pii/
S0045793018301786

106. Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance
modeling and prediction of parallel and distributed computing systems. Int. J. Comput. Intel.
Res.(IJCIR) 4, 17–26 (2008)

107. Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional quasistatic model
for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9, 044204 (2006).
https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204

108. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68
(2015). http://doi.acm.org/10.1145/2699414

m.thaha.h@ieee.org

http://www.sciencedirect.com/science/article/pii/S1631072110002111
http://www.sciencedirect.com/science/article/pii/S1631072110002111
http://www.open-mpi.org/
http://www.mpich.org/
http://www.nas.nasa.gov/publications/npb.html
http://www.sciencedirect.com/science/article/pii/S0167819117300182
http://www.sciencedirect.com/science/article/pii/S0167819117300182
http://dx.doi.org/10.1088/0067-0049/188/2/358
www.nersc.gov/projects/paratec
http://www.sciencedirect.com/science/article/pii/S0045793018301786
http://www.sciencedirect.com/science/article/pii/S0045793018301786
https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204
http://doi.acm.org/10.1145/2699414


450 T. Muhammed et al.

109. Rudi, J., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ineichen, Y., Bekas,
C., Curioni, A., Ghattas, O.: An extreme-scale implicit solver for complex PDEs: highly
heterogeneous flow in earth’s mantle. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’15, pp. 5:1–5:12.
ACM, New York, (2015). http://doi.acm.org/10.1145/2807591.2807675

110. Sáez, X., Soba, A., Sánchez, E., Kleiber, R., Castejón, F., Cela, J.M.: Improvements of the
particle-in-cell code EUTERPE for petascaling machines. Comput. Phys. Commun. 182(9),
2047–2051 (2011). http://www.sciencedirect.com/science/article/pii/S001046551000531X.
Computer Physics Communications Special Edition for Conference on Computational
Physics Trondheim, June 23-26, 2010

111. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0, pp. 3–35. Springer International Publishing, Cham (2016)

112. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki,
S., Matsunaga, N., Nguyen, K.A., Su, S., et al.: General atomic and molecular electronic
structure system. J. Computat. Chem. 14(11), 1347–1363 (1993)

113. Schwarz, K., Blaha, P., Madsen, G.: Electronic structure calculations of solids using
the WIEN2K package for material sciences. Comput. Phys. Commun. 147(1), 71 – 76
(2002). http://www.sciencedirect.com/science/article/pii/S0010465502002060. Proceedings
of the Europhysics Conference on Computational Physics Computational Modeling and
Simulation of Complex Systems

114. Snavely, A., Gao, X., Lee, C., Carrington, L., Wolter, N., Labarta, J., Gimenez, J., Jones, P.:
Performance modeling of HPC applications. In: PARCO, vol. 13, pp. 777–784 (2003)

115. Stanisic, L., Videau, B., Cronsioe, J., Degomme, A., Marangozova-Martin, V., Legrand, A.,
Méhaut, J.F.: Performance analysis of HPC applications on low-power embedded platforms.
In: Proceedings of the Conference on Design, Automation and Test in Europe, March, pp.
475–480. EDA Consortium (2013)

116. Strunk, T., Wolf, M., Brieg, M., Klenin, K., Biewer, A., Tristram, F., Ernst, M., Kleine, P.J.,
Heilmann, N., Kondov, I., Wenzel, W.: Simona 1.0: An efficient and versatile framework for
stochastic simulations of molecular and nanoscale systems. J. Comput. Chem. 33(32), 2602–
2613. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23089

117. Subbiah, A., Wasynczuk, O.: Computationally efficient simulation of high-frequency tran-
sients in power electronic circuits. IEEE Trans. Power Electron. 31(9), 6351–6361 (2016)

118. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Proc. Comput. Sci. 109, 1122–1127 (2017). http://
www.sciencedirect.com/science/article/pii/S1877050917311225. 8th International Confer-
ence on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International
Conference on Sustainable Energy Information Technology, SEIT 2017, 16–19 May 2017,
Madeira

119. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using
big data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 111–122. Springer International
Publishing, Cham (2018)

120. Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: scalable java message-passing communica-
tions on parallel systems. J. Supercomput. 60(1), 117–140 (2012)

121. Tikir, M.M., Carrington, L., Strohmaier, E., Snavely, A.: A genetic algorithms approach
to modeling the performance of memory-bound computations. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, p. 47. ACM, New York (2007)

122. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore
with GPU accelerators. In: 2010 IEEE International Symposium on Parallel Distributed
Processing, Workshops and PhD Forum (IPDPSW), April, pp. 1–8 (2010)

123. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accel-
erated manycore systems. Parall. Comput. 36(5), 232–240 (2010). http://www.sciencedirect.
com/science/article/pii/S0167819109001276. Parallel Matrix Algorithms and Applications

m.thaha.h@ieee.org

http://doi.acm.org/10.1145/2807591.2807675
http://www.sciencedirect.com/science/article/pii/S001046551000531X
http://www.sciencedirect.com/science/article/pii/S0010465502002060
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23089
http://www.sciencedirect.com/science/article/pii/S1877050917311225
http://www.sciencedirect.com/science/article/pii/S1877050917311225
http://www.sciencedirect.com/science/article/pii/S0167819109001276
http://www.sciencedirect.com/science/article/pii/S0167819109001276


18 HPC-Smart Infrastructures: A Review and Outlook 451

124. Usman, S., Mehmood, R., Katib, I.: Big data and hpc convergence: the cutting edge and
outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. pp. 11–26. Springer International Publishing,
Cham (2018)

125. Vetter, J.S., Alam, S.R., Dunigan, T.H., Fahey, M.R., Roth, P.C., Worley, P.H.: Early
evaluation of the Cray XT3. In: 20th International Parallel and Distributed Processing
Symposium, 2006 (IPDPS 2006), 10 pp. IEEE, New York (2006)

126. Voorsluys, W., Garg, S.K., Buyya, R.: Provisioning spot market cloud resources to create cost-
effective virtual clusters. In: Algorithms and Architectures for Parallel Processing, pp. 395–
408. Springer, Berlin (2011)

127. Wolf, F., Wylie, B.J., Abrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M.,
Hermanns, M.A., Mohr, B., Moore, S., et al.: Usage of the scalasca toolset for scalable
performance analysis of large-scale parallel applications. In: Tools for High Performance
Computing, pp. 157–167. Springer, New York (2008)

128. Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Large-scale
performance analysis of Sweep3D with the scalasca toolset. Parall. Process. Lett. 20(04),
397–414 (2010). https://doi.org/10.1142/S0129626410000314

129. Yan, S., Zhou, Z., Dinavahi, V.: Large-scale nonlinear device-level power electronic circuit
simulation on massively parallel graphics processing architectures. IEEE Trans. Power
Electron. 33(6), 4660–4678 (2018)

130. Yang, R., Gu, L., Tho, C., Sobieszczanski-Sobieski, J.: Multidisciplinary design optimization
of a full vehicle with high performance computing. In: Fluid Dynamics and Co-located
Conferences, June. American Institute of Aeronautics and Astronautics, Reston (2001).
https://doi.org/10.2514/6.2001-1273

131. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visualization with
Jumpshot. Int. J. High Perform. Comput. Appl. 13(3), 277–288 (1999)

m.thaha.h@ieee.org

https://doi.org/10.1142/S0129626410000314
https://doi.org/10.2514/6.2001-1273



