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ABSTRACT Smart city advancements are driving massive transformations of healthcare, the largest global
industry. The drivers include increasing demands for ubiquitous, preventive, and personalized healthcare,
to be provided to the public at reduced risks and costs. Mobile cloud computing could potentially meet the
future healthcare demands by enabling anytime, anywhere capture and analyses of patients’ data. However,
network latency, bandwidth, and reliability are among the many challenges hindering the realization
of next-generation healthcare. This paper proposes a ubiquitous healthcare framework, UbeHealth, that
leverages edge computing, deep learning, big data, high-performance computing (HPC), and the Internet
of Things (IoT) to address the aforementioned challenges. The framework enables an enhanced network
quality of service using its three main components and four layers. Deep learning, big data, and HPC are
used to predict network traffic, which in turn are used by the Cloudlet and network layers to optimize data
rates, data caching, and routing decisions. Application protocols of the traffic flows are classified, enabling
the network layer to meet applications’ communication requirements better and to detect malicious traffic
and anomalous data. Clustering is used to identify the different kinds of data originating from the same
application protocols. A proof of concept UbeHealth system has been developed based on the framework.
A detailed literature review is used to capture the design requirements for the proposed system. The system is
described in detail including the algorithmic implementation of the three components and four layers. Three
widely used data sets are used to evaluate the UbeHealth system.

INDEX TERMS Cloudlets, deep learning, Internet of Things (IoT), mobile edge computing, mobile
healthcare, preventive healthcare, traffic classification, traffic prediction, survey, fog computing, cloud
computing, multimedia applications, smart cities.

I. INTRODUCTION
Healthcare is undergoing a fundamental, extensive, and far-
reaching shift due to the technological developments in
the past few years [1]. Advancements in Information and
Communication Technologies (ICT) such as cloud com-
puting [2], [3], Internet of Things (IoT) [4], [5], wireless
communications (WSN, WBAN) [6], [7], big data [8], [9],
robotics [10], [11], and artificial intelligence [12]–[14],
have played a major role in changing the healthcare land-
scape. Advances in mobile and wireless communication

technologies (4G/5G) have provided us anywhere, anytime
connectivity, and this has given birth to new healthcare
paradigms and services.

Smart cities are considered a major driver for the trans-
formation of healthcare and many other industries [15], [16].
This is due to the fact that smart cities are driven
by, or involve, integration of multiple city systems such as
transport, healthcare, and operations research [17]–[20], with
the aim to provide its citizens a high quality of life. See [21],
for instance, for motivations of smart cities and societies.
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Delivering high quality healthcare to the citizens has been
a prime challenge for all governments throughout the world
due to the increasing health issues among the populations,
and falling budgets, and this has been another major driver of
the ongoing renewal of the healthcare industry.

Networked healthcare aims to deliver healthcare services
without any geographical or temporal constraints. It is sup-
posed to provide anytime anywhere services regardless of the
location of patients and without any constraints on patients’
mobility. Networked healthcare enables remote care for the
patients with chronic and lifestyle diseases requiring con-
stant monitoring such as diabetes, heart disease, arthritis, and
lupus [22], [23]. Networked mobile healthcare systems have
evolved depending upon the advancements in communication
technologies progressing through 2G, 3G, WLAN, 4G and
recently 5G networks. Networked healthcare faces a great
deal of networking challenges including reliability, service
availability, dearth of radio resources, communication delay,
energy consumption, and network congestion.

Another major technology that has influenced networked
healthcare is cloud computing, which enables anytime any-
where access to the data stored in a cloud. This signifies the
ubiquitous and on-demand access to computational, storage,
and network resources from a large group of resources via
resource virtualization [24]. The users can lease required
resources and are billed according to the resources used.
This apparent infinite on-demand resource availability has
resulted in the provision of infrastructure, platform, and soft-
ware as services [25]. Cloud computing can considerably
reduce the cost of creating a networked healthcare system and
efficiently use the resources provided by the cloud. The need
for convenient computational power, storage, and networking
resources without large operational and maintained costs has
led to the adoption of cloud computing for networked health-
care [26]. Easy integration of IoTs with cloud is also another
factor that has driven cloud computing forward [21], [27].

Mobile devices are vital in real-time monitoring of patients
that (geographically) move around a networked healthcare
environment. The traditional cloud architecture did not have
provision to accommodate mobility of devices. Hence, a new
architecture was introduced called Mobile Cloud Comput-
ing (MCC) [28], which enables the mobility of patients with-
out restrictions in availing the medical services. User mobile
devices are used as an extra layer of the cloud medical cloud
networks to provide unrestricted service to the user. MCC
healthcare applications monitor the vitals of a patient in real
time, as well as several other activities of patients, in order,
for instance, to calculate the calories burnt [29], [30]. The
real time data captured by the sensors and IoT devices is
analyzed at the central cloud. The user can view the data and
the results of these analyses on the various interfaces, e.g. on
mobile devices, provided by the healthcare service provider.
A survey on the requirements and challenges of MCC can be
found in [31].

MCC has a number of advantages: (1) it enables unlim-
ited usage of resources for mobile devices without any

energy or memory constraints [32], (2) A centralized resource
management results in lower costs as it is easier to main-
tain and operate without any overheads, and (3) It supports
multiple device platforms since the main computation and
storage is done in the cloud. However, when it comes to
real-time monitoring and analysis required by the mobile
applications within a networked healthcare cloud environ-
ment, it inevitably suffers from poor performance due to the
typical geographic distances between the mobile devices and
the backend clouds. Therefore, performance issues such as
high latency and bandwidth limitations restrain the use of
low-latency or high-bandwidth multimedia healthcare appli-
cations using traditional cloud or MCC [26], [33]. To alle-
viate these issues, a variation of MCC called Mobile Edge
Computing (MEC) was proposed for cloud based networked
healthcare applications [34], [35].

Unlike MCC, MEC provides lower latencies, higher band-
widths, proximity to the patient, and location awareness.
European 5G PPP (5G Infrastructure Public Private Partner-
ship) has recognized MEC as a vital technology in enabling
next generation 5G networks [36]. 5G networks are vital
in improving the performance of future networked mobile
healthcare applications. Three classes of MEC have been
discussed in the literature, (1) Mobile Edge Computing,
(2) Fog Computing, and (3) Cloudlets. Fog computing was
introduced by Cisco [37] and has the capability to leverage
future IoT healthcare applications [37]. Fog computing uses
edge routers situated near the user to perform a majority
of computations. Computations are transferred to the edge
network near the user to reduce network latency. The major
difference between edge and fog computing is that fog com-
puting identifies itself more in an IoT perspective [38]. Fog
and edge computing may also differ in the specific location
within the network where the functionality of these technolo-
gies are placed.

Fog computing has a number of challenges that need
addressing such as network security, authentication, resource
management, and privacy. A recent class of edge architec-
ture is known as cloudlets, developed at Carnegie Mellon
University [39]. Cloudlets are data centers in a box and
can be easily deployed. Cloudlets improve the latency and
bandwidth of the network. Healthcare applications involv-
ing real-time video streaming, virtual and augmented reality,
and content delivery shall greatly benefit from the use of
cloudlets. Cloudlets improve the quality of service (QoS)
of a networked healthcare system by reducing the latency,
improving the capacity, improving the connectivity, and fault
tolerance of the network. We will see later that cloudlets
that are used in our framework are effective in reducing
network latency and energy consumption [40]. The cloudlet
architecture is discussed in detail in Section II.
Network traffic modeling and analysis play a vital role

in understanding and optimizing network traffic perfor-
mance [41]. Prediction of future network traffic, based on
the historical network traffic is important for maintaining the
QoS of a networked healthcare system. Measurement based
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network control enables us to predict the required bandwidth,
probable latency, and jitter in the network [42]. Higher predic-
tion accuracy is required for achieving the optimal utilization
of the network resources. Various time series models such
as ARIMA, ARMA, and MMPP models have been used in
various studies to predict general network traffic [43]. For
instance, the distance learning framework UTiLearn [21] has
a component that enhances the network quality of service of
the UTiLearn teaching and learning system using AI based
prediction. However, modeling and analysis of networked
healthcare systems from QoS perspectives is sparse in the
literature. We will see later in this paper that deep learning
based traffic prediction will help in regulating networks and
enhancing QoS.

Similarly, network traffic classification is another funda-
mental aspect to comprehend and enhance network QoS.
These classification techniques prioritize the applications
when the availability of the bandwidth is limited [44].
Traffic classification also helps in identifying the various pro-
tocols and applications passing through the network and can
enhance the security by identifying and blocking malicious
packages. Three different kinds of classification techniques
exist in the literature: (1) port based, (2) payload based,
and (3) statistics based. Port-based techniques are ineffective
due to the usage of a standard port by multiple applications
and protocols. Due to the expansion in protocols, a large
number of applications either share the same port or do not
use the standard port. The payload based techniques cannot
be used if the traffic is encrypted. Healthcare data of the
patients are highly confidential and are generally encrypted
hence analyzing the payload is not an option. Moreover,
it might breach the confidentiality of the patient. We will use
classification to improve network QoS and security.

This paper proposes a ubiquitous healthcare framework,
UbeHealth, that leverages edge computing, deep learning,
big data, high-performance computing (HPC), and the Inter-
net of Things (IoT), to address the challenges that we
have discussed earlier in this section. The letters ‘‘Ub’’ in
UbeHealth represent the networked and ubiquitous nature
of the proposed framework. The next letter ‘‘e’’ represents
‘‘edge-enablement’’. The next word ‘‘Health’’ represents
health and healthcare.

The particular focus of this paper is at the network layer.
We address the networking challenges such as latency, band-
width, energy consumption and other QoS parameters faced
by networked healthcare systems. The framework enables
an enhanced network quality of service using its four lay-
ers (Mobile, Cloudlet, Network, and Cloud layers) and three
components.

The Network Traffic Analysis and Prediction (DLNTAP)
Component uses deep learning, big data, and HPC technolo-
gies to predict network traffic for the future. The Cloudlets
and the network layers use the predicted traffic to optimize
data rates, data caching and routing decisions. The Deep
Learning Network Traffic Classification (DLNTC) Compo-
nent is responsible for classifying the application protocols

of the traffic flows. This enables the Network Layer to
better meet the communication requirements of applica-
tions in order to maintain a high QoS and to detect mali-
cious traffic and anomalous data. The Flow Clustering and
Analysis (FCA) Component clusters the data to identify the
different kinds of data originating from the same application
protocols. IoT forms a part of the digital infrastructure in our
proposed framework and is required to collect and monitor
the patient’s biomedical signals and activity for enabling
preventive healthcare. See Section V for further details on the
framework components and layers.

We develop a proof of concept UbeHealth system based on
the proposed framework. A detailed literature review is used
to capture the design requirements for the proposed system.
The system is described in detail including the algorithmic
implementation of the three components and four layers.
A nationwide networked healthcare system case study and
three widely used datasets are used to evaluate the Ube-
Health system, demonstrating promising results including a
50% reduction in latency. To the best of our knowledge,
this is the first work that extensively addresses the various
network-related issues in next-generation healthcare systems
using adaptive deep learning and data mining techniques to
enhance QoS.

The rest of this paper is organized as follows. Section II
gives a background on the main technologies used in this
work. A review of the related literature is given in III.
Section IV identifies the requirements for, and the chal-
lenges facing the networked healthcare systems. Section V
discusses the proposed network framework that integrates
cloudlets, deep learning based traffic prediction system, and
DL based traffic classification system. An evaluation of the
various components of the proposed framework is provided
in Section VI. The entire proposed framework is evaluated
in Section VII. Section VIII concludes the article.

II. BACKGROUND
This section briefly introduces the technologies related to this
work.

A. CLOUDLETS
Cloudlets were introduced by Satyanarayanan et al. [39] for
alleviating network issues such as latency and jitter. It is a
mobile edge based technology and can be regarded as an
extension of the central cloud. It is technically a ‘‘data center
in a box,’’ which is self-managing, simple to deploy & inte-
grate toWi-Fi access points ormobile base stations. Cloudlets
are highly energy efficient. Cloudlet mainly consists of cache
copies of data available elsewhere and hence destruction of
cloudlets is not calamitous.

It has a three-tier architecture [39], consisting of
(1) Devices, (2) Cloudlets, and (3) Cloud. WiFi access
points and mobile base stations can be used to deploy the
cloudlets [45]. Multimedia healthcare applications require
low network latencies hence the use of cloudlets will enable
this. Introduction of 5G base stations along with cloudlets
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FIGURE 1. The architecture of cloudlets.

will reduce the latency less than 1 ms [46]. The cloudlets will
cooperate and communicate with each other to recover from
faults as well as meet user demands [47]. A detailed discus-
sion on the mobile edge can be found in [48]. A discussion
on mobile cloud computing model and big data analysis for
healthcare applications can be seen in [49]. Cloudlets enable
reduced latency and improved privacy, energy efficiency,
bandwidth, scalability, and reliability.

B. DEEP NEURAL NETWORKS (DNN)
Deep Learning (DL) can learn various representations of data
with multiple levels of abstraction with the help of computa-
tional models. These computational models consist of mul-
tiple processing layers for learning and recognition of these
representations. Deep learning discovers complex structures
in large data sets by using the backpropagation algorithm to
indicate how a machine should change its internal parameters
that are used to compute the representation in each layer
from the representation in the previous layer. A consider-
able amount of skill and domain knowledge is required for
the design and selection of features. A major advantage of
deep learning is that it can discover complex features in
between the layers. A thorough discussion of deep learning is
covered in [50]–[52].

In this work, we use two kinds of Deep Learn-
ing Architecture, (1) Multi-Layer Perceptron (MLP), and
(2) Recurrent Neural Network (RNN), more specifically
Long Short-Term Memory (LSTM). These are discussed in
the subsection below.

1) MULTI LAYER PERCEPTRONS (MLP)
Multi-Layer Perceptrons (MLP) is a type of deep neural net-
work which consists of neurons connected to form an acyclic
graph. The neurons are generally arranged in a number of lay-
ers. Full connections exist between the layers of theMLP. The
output of a neuron in a layer is passed as input to the neurons
in the next layer. An MLP should have at least three layers
of hidden layers to be classified as a deep neural network.
All MLPs have an input layer, an output layer, and multiple
hidden layers. The higher the number of the hidden layer the

FIGURE 2. The architecture of a Multi Layer Perceptron.

deeper is the network. Each neuron uses various non-linear
activation functions to enable learning of features. Fig. 2
illustrates a simple MLP. The common activation functions
are sigmoid, tanh, ReLU, Leaky ReLU, and Maxout.

The process of finding the activations is called as the
Forward Propagation. After forward propagation, the loss is
computed, and the loss function is optimized, which is also
known as Backward Propagation.

FIGURE 3. The architecture of a recurrent neural network.

2) RECURRENT NEURAL NETWORKS (RNN)
Unlike MLP, RNN is a type of artificial deep neural network
in which the connected neurons form a directed cyclic graph,
which enables RNN to have a dynamic temporal behavior.
An arbitrary sequence of inputs can be processed by the RNN
using its internal memory. RNNs show excellent performance
in predicting time series tasks [53]. In RNN, the hidden layers
of one neural network are connected to the hidden layers of
the next neural network in time sequence, i.e., the current
state as well the previous state is taken into account. Since
RNN is trained with backpropagation through time, it can be
considered as a feed-forward neural network that has been
unfolded with multiple layers. This is illustrated in Fig. 3.
Hence, this can result in issues such as vanishing or exploding
gradients as it is passed back through many time steps during
the back-propagation [54].
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Long Short-termMemory (LSTM)was introduced to solve
the vanishing gradient problem of vanilla RNN. It mainly
consists of three layers, (1) Input layer, (2) Output layer,
and (3) Recurrent hidden layer. The recurrent hidden layer
consists of a memory block, which is the fundamental unit
instead of neurons. Memory blocks consist of subnets that
are recurrently connected. Each block consists of one or more
memory cells and three gates [54]. The gates are: (1) Input
gate, (2) Output gate, and (3) Forget gate. These gates are
used to control the flow of information and enable the blocks
to store and retain the information for larger periods of time
to solve the vanishing gradient problem. Fig. 4 depicts the
general architecture of an LSTM cell block.

FIGURE 4. The architecture of a single long short-term memory cell block.

III. LITERATURE SURVEY
In this section, we survey the recent advances in ubiquitous
healthcare. We discuss advances related to the use of IoT
and Big data for mobile healthcare networks and state of
the art regarding mobile cloud healthcare and mobile cloud
healthcare at the edge. We also discuss recent healthcare
applications that are a part of mobile healthcare. A detailed
survey on the role of information and communication tech-
nologies in healthcare can be found in [55].

A. IoT AND BIG DATA BASED MOBILE HEALTHCARE
Fast-paced developments in the Internet of Things (IoT)
and big data has resulted in new opportunities in healthcare
such as wearable sensors, personalized e-health, and mobile
healthcare. Discussions on the concerns, requirements, safety,
and reliability of mobile healthcare networks based on cloud
computing and IoT is discussed in [56]. Pag á n et al. [57]
discuss an energy efficient workload balancing technique for
mobile cloud computing for healthcare scenarios. They opti-
mize the energy and balance the load of aWireless Body Area
network for predicting migraines in patients across Europe
by developing a set of radio & network policies and load
balancing policies.

IoTs are regularly used for monitoring the motion and
activities of the patients. Real-time information about the

activity, motion, and associated health parameters will enable
the health practitioners to monitor the patients efficiently and
respond to emergencies. Continuous monitoring of patients’
physiological signals has an impact on the architecture of
the network. Adame et al. [58] have developed a monitoring
system with Wireless Sensor Networks (WSNs) and Radio
Frequency Identification (RFIDs) named CUIDATS, which
tracks the location and the health of the patients. Wear-
able technology is used to detect a patient’s vitals such
as blood pressure, temperature, heart rate, and movement.
Ammae et al. [59] have developed another motion detector
that detects motion during sleep with the help of WiFi signal
fluctuations of the moving patients. Different signal values
and associated movements are collected to train a linear
regression model for prediction of movements. Another mon-
itoring system using WSNs have been developed in [60]. The
signals from multiple patients are collected using sensors and
are sent to the base station for monitoring and processing.
Mora et al. [61] propose an IoT based distributed frame-
work for monitoring the medical signals for human activities
involving physical efforts. They use off-the-shelf devices
inside existingWireless Body Area Networks (WBAN) of the
patient. They use chest strap sensors and wearable sensors
to monitor the health of football players in real time. The
communication between the sensors uses Bluetooth, whereas
communication with remote devices takes place through
wireless access points. The information for further processing
is sent through LAN.

LPWAN (Low Power Wide Area Network) is a set
of protocols and technologies that belongs to long-range
communication standard and fulfills the communication
requirements for IoT applications. Unlike traditional IoT
communication protocols such as Bluetooth and WiFi which
has communication range in orders of meters, LPWAN has a
communication range in orders of kilometers which requires
setting up of larger networks for efficient healthcare applica-
tions [62]. The significant advantage of LPWAN over other
communication protocols are a longer lifetime of the sensor
nodes, more extended communication range, and inexpensive
hardware [63], [64]. Moreover, LPWAN protocols do not
require to send more than a few bytes at a time and hence
has been designed to support intermittent short bursts of data.
The communication can be initiated by both the sensor or an
external entity that wishes to communicate with the sensor.
These features make LPWAN a suitable candidate for a large
number of healthcare applications that do not require signif-
icant data rate and low latency [65]. Healthcare use cases
such as general monitoring of the patient’s vitals and periodic
updates and rehabilitation where updates are only required
infrequently (once a day) are good examples of LPWAN
scenarios. The lower power consumption ensures that the
medical sensors would operate for a longer time without
recharging or changing of batteries. Low power, long-range
communications is achieved at the cost of higher latency and
lower bit-rates. Hence, LPWAN is not suitable for safety-
critical healthcare applications that require a latency between
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1-10 ms [65]. The primary well-established standards for
LPWAN include LoRa, LoRaWAN, Sigfox, and NB-IOT.
Other standards proposed by various researchers can be
found in [62], [65], and [66].

Petäjäjärvi et al [63], [67] evaluates the perfor-
mance of the LPWAN technology, LoRa, employing
real-life measurements for remote health monitoring.
Buyukakkaslar et al. [68] evaluate the performance of
LoRaWAN as a communication protocol for electronic
healthcare systems. Catherwood et al. [69] designed an IoT
based bio-fluid analyzer consisting of an electronic reader for
biomedical strip-based diagnostics system for personalized
monitoringwith LoRa/Bluetooth communication technology.
A detailed overview of LPWAN technology, the challenges,
and opportunities for implementing LPWAN for smart health-
care can be seen in [62].

A survey on the use of IoT for healthcare can be found
in [70]. They discuss various architectures, platforms, and
applications of healthcare using IoT. They also propose a
security model for the protection of classified patient data
from threats including communication and network attacks.
A survey on the use of WSNs for healthcare can be seen
in [6]. This survey discusses the design issues and challenges
of using WSN for healthcare applications. Moreover, they
review various healthcare applications and prototypes that
exist in the literature.

Many works that discuss the use and role of big data in
healthcare have appeared recently. See, for instance, [49].

B. CLOUDS, CLOUDLETS, FOG AND EDGE COMPUTING
IN MOBILE HEALTHCARE
A discussion regarding the use of mobile cloud computing for
healthcare services can be found in [71]. Hassan et al. [72]
propose a cloud-based healthcare data sharing network that
combines both the cloud and wireless body area network.
They combine Zigbee with TCP/IP to enable a reliable inter-
action. They use Content-Centric Networking (CNN) [73] to
enable an adaptive flow of data. They aim to improve the
lifetime and efficiency of the proposed network.

Hoang and Chen [74] propose an infrastructure for
mobile cloud named Mobile Cloud for Assistive Health-
care (MoCAsH). The proposed healthcare cloud consists
of mobile sensing, context-aware middlewares, deployment
of agents, and protocol collaboration for resource utiliza-
tion and sharing. Federated P2P clouds are used to enhance
the security and privacy of the patients. Miah et al. [75]
propose a cloud-based network for healthcare consultancy
for remote communities in developing countries which
enable interaction between patients, doctors, and healthcare
practitioners.

Preventive mobile healthcare requires high data rate and
very low latencies for optimal functioning in order to fully
benefit from highly interactive, bandwidth-hungry technolo-
gies including virtual reality, multimedia applications, and
the Internet of Things (IoT). Traditional mobile communica-
tion and cloud infrastructures which are base station centric

cannot easily copewith the requirements ofmobile healthcare
infrastructure. Some of the major challenges include diffi-
culty in offloading large data, high latency, redundant trans-
mission of data, and service availability. This has resulted
in the development of edge networks. As mentioned in
Section I, three types of edge networks have been devel-
oped, mobile edge computing (MEC), fog computing, and
cloudlets.

Rahmani et al. [76] discuss the usage of a gateway based
fog architecture to enable local storing and processing of data
for a healthcare network using internet of things. The authors
try to address issues such as reliability, energy consumption,
and scalability to improve the performance of healthcare
networks. A prototype of an early warning health monitoring
system is developed to analyze the performance of the pro-
posed fog based gateway. Farahani et al. [77] discuss the chal-
lenges faced in mobile cloud architectures and propose the
use of fog computing to enable a faster network for healthcare
applications. Negash et al. [78] propose a healthcare archi-
tecture that uses fog computing layer. The proposed archi-
tecture consists of medical sensors, environmental sensors,
and activity sensors at the first layer. The second layer is the
fog layer which interacts with the sensors to store, compress,
and transmit data. The third layer is the primary cloud server
which processes and sends/receives a response to/from the
fog layer. A discussion on mobile big data fogs and edge
computing to enable smarter cities can be seen in [15].

Kraemer et al. [79] review and discuss the usage of fog
computing in healthcare. They review different healthcare
application use cases and determine the suitability of using
fog computing for these applications. They list out the various
number of applications and computing tasks in healthcare that
can be improved using fog computing. They also discuss the
privacy concerns related to cloud computing.

Real-time processing, sharing, and processing of big
healthcare data require strong wireless and mobile communi-
cation infrastructure. For providing a good quality of service
for the mobile end users, the resources need to be migrated
to different cloudlets as the user moves from one area to
another, which can be accomplished using VM migration.
Islam et al. [80] propose a new VM migration model based
on the ant colony optimization techniques for a mobile cloud
computing based healthcare system in a smart city environ-
ment, improving the response time for the end user. The
proposed model is based on both the user mobility as well
as the resource utilization load of the cloudlets. Tawalbeh
et al. [81] propose a master cloudlet based model for mobile
cloud healthcare applications. A master cloudlet is utilized
to connect other distributed cloudlets. The master cloudlet is
connected directly to the central cloud and is in charge of the
other cloudlets under it. The cloudlets and master cloudlets
are only used if the user is in the range of the cloudlets, else
the user is directly connected to the main cloud. The impor-
tance of mobile cloud computing in a networked healthcare
is discussed in [49]. They discuss the use of cloudlets in
mobile cloud computing infrastructure for healthcare big data
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applications. A review of the tools and technique for big data
analysis is also discussed.

C. MULTIMEDIA HEALTHCARE APPLICATIONS
Mobile applications for preventive healthcare is rapidly
improving and evolving. A large number of mobile healthcare
applications have been developed by the research community
with regards to chronic diseases [82], [83], diabetes [84], [85],
cardiology [29], [86], [87], obesity [30], and mental health
and behaviour [88].

Lv et al. [89] introduce two mobile healthcare appli-
cations that use Big Data for creating electronic medical
records (EMR). The first application is for improving the user
experience in oxygen chambers by using virtual glasses and
immersive technology and the second application is voice
interactive game for providing rehabilitation assistance to
therapists.

Deep learning based applications have become a cen-
tral part of mobile healthcare infrastructure. Deep learning
enables prediction as well as detection of various chronic
diseases. Deepr [90] is a healthcare application using convo-
lution neural networks to determine unplanned readmission
after discharge. This application analyzes the electronic med-
ical records using convolutional neural networks determine
the gap of admission to hospital due to various diseases.
Doctor AI [91] uses the history of patients to determine
the diagnosis and required medications in the next visit.
Sathyanarayana et al. [92] discuss an application that can
estimate the sleep quality from wearable device data with the
help of deep learning. A detailed survey of various healthcare
applications can be found in [22] and survey on healthcare
applications that utilize deep learning can be found in [93].

D. PERFORMANCE MODELING AND QoS OF
HEALTHCARE NETWORKS
Complex network analysis is an area of great significance.
It uses many diverse methods and have found applications
in many areas [94], [95]. Modeling and analysis of complex
communication networks and applications is no exception.
A great deal of studies exists that discuss and analyze the
performance of healthcare applications over various net-
works [26], and distributed systems, such as computational
grids [96], and computational clouds [26], [97]. The traffic
on emerging networks that support healthcare systems would
includemanymultimedia and analytics applications requiring
a range of interaction frequencies, and communication laten-
cies and bandwidths.

A study conducted to determine the requirements of health-
care applicationsmeasured the network performance between
three hospitals in the Ontario region (Canada) [98]. Another
such study can be seen in [26] where the end-to-end net-
work performance between twelve hospitals in four cities
(Birmingham, Washington D.C, Abaha, and Riyadh) is
measured for requirement analysis. Both these studies use
OPNET modeler to model HTTP, FTP, database, and email
transactions to measure the network delay and queuing time

for the network components. Quality of Service (QoS) is
crucial for the transmission of real-time healthcare data
across various networks. Modeling of multimedia services
over (infrastructure and ad-hoc) wireless and hybrid networks
is discussed in [99] and [100]. Moreover, they discuss mod-
eling of multimedia services over Voice over IP (VoIP) pro-
tocol networks within metropolitan area networks in [101].
Mehmood et al. [102] and Mehmood and Alturki [103]
have proposed a scalable provisioning and routing scheme
for multimedia QoS in ad-hoc networks. They also pro-
pose a cross-layered QoS over ad-hoc networks for multi-
media applications such as (audio, video, and text) [104].
Another work on QoS for multimedia communications over
ad-hoc networks and wireless networks is discussed in [105].
Chung and Park [106] proposes a mobile healthcare network
based on cloud computingwith guaranteedQuality of service.
They propose special mobile cloud services and a mobility
cloud control software that manages the communication of
the network. The proposed system uses the distributed-object
group framework and uses a cluster based mobile object
based distributed system for the development of the cloud
platform. Eucalyptus API [107] is used by the proposed
framework for providing user services to the end user.

IV. FUTURE HEALTHCARE SYSTEMS: MOTIVATIONS,
CHALLENGES AND REQUIREMENTS
This section discusses the challenges faced in implementation
of the mobile cloud-based healthcare systems from network-
ing perspective. The requirements for implementing such a
healthcare system are also discussed. The challenges and
requirements are discussed both from global perspectives as
well as specific to the Kingdom of Saudi Arabia (KSA).

A. NEED FOR MOBILE CLOUD HEALTHCARE IN KSA
Chronic diseases are recognized a predominant challenge
to global health [108]. The world health organization in its
report has noted that two-thirds of the worlds death occur
due to non-communicable chronic ailments such as car-
diovascular disease, cancers, diabetes, and respiratory dis-
eases [109]. In KSA, due to increased life expectancy and
less fertility rate the demographic composition has changed.
By 2050, 20% of the population is predicted to be older
adults [110]. A survey conducted by Saudi Ministry of
Health (SMOH) reports the occurrence of the chronic dis-
eases such as diabetes, asthma, ulcer, hypertension, and
cancer in KSA as 27.3%, 9.7%, 8.9%, 71.3%, and 2%
respectively [110]. More than quarter of the population
was reported to be obese [111]. Increase in rapidly aging
population and chronic diseases all around the world has
burdened the traditional healthcare systems. Chronic dis-
eases require frequent visits to the hospital for periodic
checkups. The dearth of healthcare practitioners and nurses
affects the care provided to the patients in traditional health-
care. Hence implementation of an information-centric mobile
cloud-based healthcare system is necessary [112]. Such a
network would enable remote monitoring of the patient’s
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vitals, which leads to a ubiquitous, personal, preventive,
reliable, and continuous healthcare to the patients. This would
provide patients with economic healthcare as compared to the
astronomical charges of traditional healthcare [113].

Pre-appointment administrative paperwork including mea-
suring the vital signals, transferring files to different depart-
ments are usually done manually and hence wastes the time
of the patient. Whereas, healthcare networks would enable
remote monitoring which would free up both the healthcare
practitioners as well as the patients. Integration with IoT will
enable to get a holistic status of person’s health with the
help of sensors. Analysis of continuously captured biological
parameters would help in predicting and preventing sick-
ness or ailments such as cardiac arrests. Hence there is a need
to converge home, hospital, and other sources of healthcare
with the help of mobile computing networks, IoT, and other
technologies specifically in KSA.

B. CHALLENGES AND REQUIREMENTS
In this subsection, we shall discuss the challenges as well
as the requirements for mobile cloud healthcare applications
that were identified from the literature.

1) LATENCY
The latency requirement varies with the nature of healthcare
applications. It varies with the type of application and the con-
text in which the application is being used. Some healthcare
applications have stricter requirements than others. Some
applications are tolerant to delays while others are not. For
example, transmission of ECG signals can tolerate delays
up to 2 to 4 seconds [114]. Whereas, real-time applications
within the domains of multimedia telemedicine [115] and
Tactile Internet [116] require a much lower delay. Multi-
media applications in the context of remote diagnosis and
surgery require interactive audio and video transmission.
The latency for both audio and video should not exceed
more than 300 ms [117], [118]. Live remote surgeries would
require jitter less than 1 ms along with guaranteed network
QoS [119]. Fluctuations in the QoS will result in the loss
of lives. Hence these safety-critical applications demand a
highly stable, reliable network with QoS.

2) BANDWIDTH
Mobile cloud health services require large transmission band-
width for transmitting high-quality medical images (MRI,
CT-Scan), video and audio for remote VoIP connections, and
other biomedical signals that are captured from the patients.
Depending upon the context of the usage sometimes high
bitrates are required and at times lower bit rates are enough.
The required bandwidth for body temperature sensor is just
2.4 bps [120]. A five lead ECGwould require a bit rate around
200 kbps. The bit rates for physiological signals based on a
number of factors such as the sampling frequency, number
of leads being used and step size of analog to digital con-
verter [121]. An EEGwith 200 lead can take around 950 kbps.
A VoIP based application would require at least 80 Kbps

whereas high-resolution videos would require bit rates
from 5 Mbps to 12 Mbps.

3) ENERGY EFFICIENCY
The rate of energy consumption of the mobile devices is a
concern. Depletion of the battery will pause the monitor-
ing, and the system will only resume once the batteries are
replaced. Battery levels need to be constantly monitored so
that it does not deplete during a surgery or other safety-critical
process. The applications, as well as the network, needs to be
optimized such that the mobile devices consume minimum
energy [122]. A study on the relationship between power
consumption and global positioning system (GPS) of mobile
user devices can be found in [123].

4) RELIABILITY
Depending upon the application context the reliability of
the network plays an important role. The repercussions
of network failure range from minor disruption to major
life-threatening scenarios. Hence, fault-tolerant techniques
should be incorporated into the network to recover from any
faults or errors instantaneously. Analysis of fault tolerant
sensor networks can be seen in [124]. Furthermore, security
also plays a major factor in facilitating reliable networks.

5) SECURITY
The patient’s health records and other data are highly confi-
dential [125]. Tampering or leakage of data caused by hacked
infrastructure has severe repercussions due to which security
in mobile healthcare network is of paramount importance.
Since the network consists of a large number of devices,
software, and healthcare applications, each running on dif-
ferent platforms with different device drivers, it can lead to
multiple security vulnerabilities that have not yet been iden-
tified. These vulnerabilities need to be diagnosed and fixed.
Datamanipulation and hijacking IoT healthcare devices in the
network may even be life threating. Hence security policies
should be developed and maintained from the manufacturer
of various devices, organizations developing the software,
and regulators that check the standard and safety of the pro-
posed mobile healthcare network [126].

V. UbeHealth: THE PROPOSED FRAMEWORK
In this section we introduce our proposed networking frame-
work for mobile healthcare services, give an overview and
present its algorithmic refinement. The proposed frame-
work adaptively enhances the network performance and
dynamically maintain Quality of Service(QoS) throughout
for mobile healthcare applications, especially mobile multi-
media applications which shall be fundamental to the next
generation smart and intelligent preventive healthcare. Fig. 5
introduces the general layered overview of our proposed
architecture and Fig. 6 illustrates the functional components
of our proposed framework.

As observed in Fig. 5 the proposed architecture has four
layers, (1) Mobile Layer, (2) Cloudlet layer, (3) Network
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FIGURE 5. The network and architectural overview of the proposed framework.

layer, and (4) Cloud layer. Our proposed framework mainly
consists of three major components which are distributed
among these four layers (Fig. 6). The three major components
are:

1) Deep Learning Network Traffic Analysis and Predic-
tion (DLNTAP) Component

2) Deep Learning Network Traffic Classification
(DLNTC) Component

3) Flow Clustering and Analysis (FCA) Component
The Mobile layer comprises of all mobile users (mostly

doctors and healthcare practitioners) and devices at vari-
ous places providing multimedia healthcare services such
as health monitoring, disease monitoring, and remote super-
vision of surgery. Fig. 5, depicts users and devices from
three different regions in the Kingdom of Saudi Ara-
bia (KSA), namely Riyadh, Jeddah, and Abaha. Any mobile

device or user that has network connectivity is included in
this layer.

The second layer is the Cloudlet layer which hosts the
cloudlet infrastructure. Each of these devices and users is
connected with the local cloudlets that are nearest to them
through access points or mobile networks. The Cloudlet
layer contains the Network Traffic Analysis and Predic-
tion (DLNTAP) Component. This component analyzes the
current bi-directional traffic and predicts the network traf-
fic for the future. Distributing this component among the
cloudlets enhances the prediction since the prediction would
be performed for the local network traffic, which results
in higher QoS. Based on the predictions of DLNTAP the
cloudlet regulates the data transmission rate. Since the predic-
tion is performed after a time interval, the cloudlet adaptively
adjusts the data rate to a suitable. The cloudlet layer also
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FIGURE 6. The functional architecture of the proposed scheme.

consists of a cache server which is used to cache frequently
accessed data. Caching frequency is determined by the pre-
dictions from DLNTAP component. This enhances the QoS
of the network. The predicted network traffic is also broad-
casted to the components in the Network Layer so that they
can make informed routing decisions.

The Network layer is responsible for data transmission
between the Cloudlet layer and the Cloud Layer. It comprises
various local networks connected to the primary Internet
Service Provider (ISP) and the gateway. The Deep Learn-
ing Network Traffic Classification (DLNTC) Component is
implemented in this layer at the ISP network. DLNTC is
responsible for classifying the application protocols of the
traffic flows. Detecting the application protocol enables the
network to understand the application sending the data and
adjust the network as per the requirements of the application
to maintain the QoS of the network. Moreover, it enables
the network to detect malicious traffic and anomalous data
and protect the network. Flow Clustering and Analysis (FCA)
Component clusters the data of a given application protocol to
detect various communication signals, data, and anomalous
packets. It helps us in determining the different kinds of
data originating from the same application protocol. It is also
connected a firewall that blocks unknown data packets.

The Cloud Layer consists of the central cloud infrastruc-
ture. The cloud layer stores and manages the data efficiently
and process the data for various healthcare applications. The
computing at the cloud level is handled by high-performance
computers, massive scale accelerators such as GPUs and
MICS, and mass storage servers are used for storing the high

FIGURE 7. The main algorithm of the proposed framework.

volume of data. Multimedia is stored in multimedia servers,
and web pages are stored in web servers. Large computational
infrastructure performs computation and responds to the user
request. Distributed and parallel computational techniques
have reduced the delay faced by the user. The Adaptive Con-
tent Delivery (ACD) module analyzes the traffic predictions
and current traffic scenarios to select the appropriate content.
For example, a video can be stored in different bit-rates and
based on the future traffic predictions and current scenario the
Content Delivery Server (CDN) decides whether to deliver a
low bit-rate or high bit-rate multimedia content.

The main algorithm of the proposed framework is provided
in Fig. 7 and summarizes the proposed framework.
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FIGURE 8. The architecture of deep learning network traffic analysis and Prediction (DLNTAP) Component in our proposed framework.

A. DEEP LEARNING NETWORK TRAFFIC ANALYSIS AND
PREDICTION (DLNTAP) COMPONENT
With the development of IoT and mobile cloud networks
for healthcare, short-term forecasting of network traffic has
become of prime importance to reduce the delay and jit-
ter and ensure Quality of Service. To enable this, we have
implemented short-term traffic prediction component using
Deep learning, specifically Stacked Long Short-Term Mem-
ory(LSTM), a variant of Recurrent Neural Network (RNN).

Network traffic prediction requires the capture of tem-
poral and spatial change of network traffic. Unlike Feed
forward Neural Network or RNN, LSTMs can capture long-
term change with 10-15 mins of lag which was diffi-
cult in general RNNs [127]. The model makes predictions
based on the current state and knowledge of the previous
states.

Fig. 8 illustrates our Deep Learning Network Traffic Anal-
ysis and Prediction (DLNTAP) Component. The data pack-
ets pass through the extraction layer where both the traffic
features and the application features are captured. Traffic
features are measured as a time series. The extracted network
features, as well as the application features, are further pruned
by using dimensionality reduction (PCA) or feature by fea-
ture ranking techniques. The selected features are then used

to train an LSTM network. After training, we obtain a model
that can be used to forecast various network parameters.

We discuss the LSTMnetwork architecture we used as well
as the features selected later in Section VI. Once the trained
model predicts the future traffic details for a given amount
of time, the action module determines the necessary network
resources to be allocated and selects appropriate data rates so
that the quality of the network is maintained. After a threshold
time period, the model is again retrained with new input from
the current state to produce a newer accurate model to make
predictions.

The algorithm for the Deep Learning Network Traffic
Analysis and Prediction (DLNTAP) Component is given
in Fig. 9. The selected traffic features are fed into the LSTM
model for prediction if a trained model exist. If not the
model is trained using the network features. Network features
such as the duration of the flow (fd ), the bit-rate of the
network (bps), the packet rate of the network (pps), and the
number of bytes per packet (Bpp) are predicted. Based on
the predicted values the network the traffic is prioritized,
resources are allocated for different flows, and the cache
policy at the cloudlets are set to improve the QoS.

We evaluate the performance of our DLNTAP component
and the impact it has on network traffic later in Section. VI
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FIGURE 9. The algorithm for the proposed DLNTAP component.

B. DEEP LEARNING NETWORK TRAFFIC
CLASSIFICATION (DLNTC) COMPONENT
Traffic classification is fundamental for any network, espe-
cially mobile cloud networks for determining anomalies,
for traffic prioritization over a limited bandwidth, to ensure
Quality of Service (QoS) [128], [129]. Implementing
proper security policies for network firewalls requires a
proper understanding of the nature of the network traffic.
Hence, we integrate a Deep Learning Network Traffic Classi-
fication (DLNTC) Component in our framework using Deep
Feed-Forward Neural Networks.

Fig. 10 depicts our proposed DLNTC component along
with the FCA component. The first row (two modules)
of Fig. 10 illustrates the DLNTC component. Similar to
DLNTAP, initially we measure the traffic features and
extract application features. Using feature ranking tech-
niques, we rank the extracted features to make the final selec-
tion. The selected traffic features are then labeled using the
appropriate application protocols. The application protocol
indicates the application which generated the packet. For e.g.,
It can be Youtube, Facebook, Skype, or just a simple SSL
used for setting up the network. The Deep Neural Network is
then trained using the labeled traffic features from healthcare
applications. The trained classifier is then used to predict the
application protocol of the incoming traffic. The predicted
results are then passed to the Flow Clustering and Analy-
sis (FCA) Component which shall be discussed in the next
subsection. The FCA uses the results of the prediction for
further analysis to take various actions that improve the QoS
of the network.

The algorithm for the Deep Learning Network Traffic
Classification (DLNTC) Component is given in Fig. 11

We evaluate the performance of our DLNTC com-
ponent and the impact it has on network traffic later
in Section. VI

C. FLOW CLUSTERING AND ANALYSIS (FCA) COMPONENT
Network traffic originating from a single application pro-
tocol will have more than one kind of traffic flow. For
e.g., a flow that has been classified as Youtube by our
classification module can either be a video streaming flow,
browsing flows, or flows generated by redirections between
various content servers of Google and Youtube [130], [131].
Hence we integrated Flow Clustering and Analysis (FCA)
Component to cluster an analyze the traffic once the
DLNTC component predicts the protocol application
class.

Fig. 10 (DBSCAN module and action module) depicts the
Flow Clustering and Analysis (FCA) Component. Once the
DLNTC component classifies the traffic, the FCA component
clusters all the traffic with the protocol classified by DLNTC
to detect the actual use of the packets. Based on the analysis,
the action module allocates the resources, schedules traffic,
filters and block malicious traffic. After a certain threshold
time, FCA component sends a signal to DLNTC component
for retraining the classifier with the latest traffic. We use
DBSCAN clustering technique to cluster the group of the
application protocol.

The algorithm for the Flow Clustering and Analysis (FCA)
Component is illustrated in Fig. 12

We evaluate the performance of our FCA component and
the impact it has on network traffic later in Section. VI

VI. UbeHealth: EVALUATION OF THE
SYSTEM COMPONENTS
We carried out a large number of experiments using real-
world datasets to evaluate the performance of our proposed
healthcare architecture, especially the DLNTAP and DLNTC
components. In the following subsections, we present and
discuss the experiments and the results.

A. DATASET
In this work, we use three real-world network traces for
conducting our experiments. Table 1 illustrates some signif-
icant properties of these network traces. The three network
traces are captured from three different locations of the world
and hence are different regarding link type, capacity, and
volume. Two of the datasets (ISPDSL-II and Waikato-VIII)
is from the year 2013, and Wide-18 is from the year 2018.
ISPDSL-II and Waikato-VIII are public traces provided by
Waikato Internet Traffic Storage (WITS) Project [132], which
is part of the WAND research group at the University of
Waikato, Computer Science Department. ISPDSL-II con-
tains entirely contiguous packet headers captured from a
New Zealand ISP. This network trace was collected from
a switch that relayed traffic to and from the core routers
of the ISP. Hence this extensive network trace consists of
packets from all the subscribers of the ISP. Waikato-VIII
was captured at the border of the Waikato University Net-
work, hence all traffic coming and leaving the university
is included in this trace (This trace does not include the
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FIGURE 10. The architecture of DLNTC Component and FCA Component in our proposed framework.

internal University traffic). The WIDE-18 trace is provided
by MAWI working group [133], which is a part of the WIDE
project [134]. The WIDE-18 trace is captured at the transit

link (1-Gbps Ethernet link) of WIDE to the upstream ISP.
All IP addresses are scrambled for maintaining anonymity in
the WIDE-18 trace set.
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FIGURE 11. The algorithm for the proposed DLNTC component.

FIGURE 12. The algorithm for the proposed FCA component.

To isolate the traffic and generate the labels (determine
the protocol) for the trace set we developed a set of func-
tions interfacing the open source Deep Packet Inspection
tool, nDPI [135]. nDPI is based on OpenDPI (includes ntop
extensions [136]) and libpcap [137] and can detect large
number of application protocols. nDPI is frequently updated
to improve the detection of the protocols. The nDPI based
functions are used to generate the labels (application pro-
tocol names) for the all the three datasets. After labeling

TABLE 1. Network traces used.

the trace set with application protocols, we convert all the
traces to NetFlow records using the softflowd [138] tool.
More than 150 different application protocols were present
in the traces. The distribution of the major application pro-
tocol for the traces WIDE-18 and ISPDSL-II is illustrated
in Fig. 13 and Fig. 14 respectively.

The NetFlow format produced by softflowd will have only
five network features, and can be enumerated as follows:
(1) Source IP address, (2) Destination IP address, (3) Source
Port, (4) Destination Port, and (5) Protocol of the flow. These
five flow features are not quite enough to make good network
quality predictions or traffic classification. Hence, for further
identification and expansion of the NetFlow traffic features,
we use the nfdump [139] utility to correlate bidirectional
flows, as by default the transmitted and received flows are
not associated with each other. Hence nfdump correlates
the flows and determines other traffic flow details such as
duration of the flow, the number of packets transmitted and
received, the number of bits transferred per second, packet
transfer rate, and bytes per packet for each flow. Table 2
illustrates the resultant flow features consisting of 17 features.

B. EVALUATION OF THE DLNTAP COMPONENT
The DLNTAP Component predicts the selected network traf-
fic properties (Bpp, bps, pps, and duration) for the next fifteen
minute. After prediction for the next fifteenminutes, new data
is collected, and the model is retrained with the new data to
produce a new prediction model. The module trains with the
incoming data and performs predictions. In our work, the pre-
diction module is implemented using LSTM Network, a kind
of deep Recurrent Neural Network (RNN) as discussed in
Section II and Section V. The LSTM implementation in this
work is done using the Tensorflow framework [140]. We use
two metrics for evaluating the performance of the regression,
specifically Root Mean Square Error (RMSE) and Mean
Absolute Error(MAE). They are calculated as in (1) and (2)
respectively, where xt indicates the actual measurement and
yt is the forecast. For the LSTM model, the data has been
normalized between [0, 1].

RMSE =
sPn

t=1 (yt � xt )2

n
(1)

MAE =
Pn

t=1 |xt � yt |
n

(2)
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FIGURE 13. The distribution of the application protocols for the trace set WIDE-18.

FIGURE 14. The distribution of the application protocols for the trace set ISPDSL-II.

TABLE 2. The extracted flow features from the trace set.

Since there are more than 500 unique source and destina-
tion addresses we choose 500 memory units for the LSTM,
which implies that there are 500 memory units in the spatial

axis of the LSTM network. The designed model was used
to predict network traffic at an interval of 15 minutes and
30 minutes. Since a large amount of data is transmitted
and received in 15 minutes, the network traffic scenario can
change rapidly hence it is advisable to retrain the model
every 15 to 30 minutes. The number of layers in the LSTM
network was varied in the experiments and was set to 2, 3,
5, and 9. We found from our experiments that three layers
of LSTM gave the best performance. Hence, further analysis
in later subsections only discusses LSTM with three layers.
For training, validation, and testing, we divide the dataset
into subsets of size 60%, 20%, and 20% respectively. In the
following subsections, we shall discuss the performance of
our model using the datasets used in this work.

1) EVALUATION WITH WIDE-18
The WIDE-18 is the biggest dataset we have with more
than 183 million packets and 57 million unique flows.
Since WIDE-18 is a captured from the network backbone,
there are 157 unique application protocols in this dataset.
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FIGURE 15. The Root Mean Square Error between the actual value and
forecasted value for WIDE-18.

FIGURE 16. The Mean Absolute Error between the actual value and
forecasted value for WIDE-18.

Fig. 15 illustrates the RMSE for the initial 100 epochs.We can
observe that overall RMSE is quite low very close to 0.
Initially, there is a difference of 0.0002 between the training
and prediction but at later epochs achieves almost the same
RMSE. The average RMSE obtained for WIDE-18 for all the
four predictions (Bpp, bps, pps, and duration) is 0.128756.
Fig. 16 illustrates the Mean Absolute Error for 100 epochs.
We observe that Mean Absolute Error is also quite low. The
average MAE for all the four predictions (Bpp, bps, pps, and
duration) is 0.020534. Low RMSE and MAE indicate that
the difference between the actual value and the predictions
are quite low. This is further illustrated in Fig. 17, where
we compare the actual and predicted values for all the four
network traffic parameters.

Fig. 17a shows the comparison of the observed bits per sec-
ond (bps) against the predicted values for 200 seconds. It is
observed that the minimum difference is between both the
prediction and observed values are less than 0.00001 units
whereas the maximum difference is just 0.00010 bits per sec-
ond. Fig. 17b illustrates observed and predicted packet
rate for 100 seconds. The minimum difference is less than

0.000025 packets per second, and the maximum difference
is 0.000125 packets per second. Fig. 17c and Fig. 17d indi-
cates the bytes per packet (Bpp) and the duration of the
flows (duration) respectively. We can observe that maximum
and minimum difference for both flow duration and Bpp is
quite low. The value of Bpp ranges from 40 Bytes per packet
to 180 million Bytes per packet. Hence we can observe a
slightly larger difference between them. However, the RMSE
value is quite low around 0.129. These plots clearly illustrate
that the model produces good predictions for the trace set
WIDE-18.

2) EVALUATION WITH WAIKATO-VIII
Waikato-VIII has the longest capture time among the three
datasets we use in this work. However, since the capture
point is at the edge, the traceset is comparable to the other
tracesets of smaller durations. Fig. 18 illustrates the RMSE
for the initial 100 epochs. The prediction set attains a lower
RMSE over the actual values used for training. The average
RMSE obtained using Waikato-VIII for all the four pre-
dictions (Bpp, bps, pps, and duration) is 0.164734. Fig. 19
illustrates the Mean Absolute Error for 100 epochs. The
average MAE for all the four predictions (Bpp, bps, pps, and
duration) is 0.029367. Compared to WIDE-18 we observe
that the RMSE and MAE of Waikato-VIII is relatively
larger.

Fig. 20 depicts the comparison of the actual and predicted
values for all the four network traffic parameters. Fig. 20a
and Fig. 20b compares the bit-rate as well as the packet rate
of the predicted and observed values for 100 seconds. We can
observe that the predictions are almost constant and follow
a linear pattern. The sudden large peaks in the rate are not
predicted but rather an averaged value for a given time period
is predicted. Fig. 20b illustrates the comparison of Bytes per
packet and Fig. 20c shows the duration of the flow. Unlike
WIDE-18 or ISPDSL-II, theWaikato-VIII is not a contiguous
traceset. This leads to missing time information hence we can
observe the RMSE, and theMAE is larger thanWIDE-18 and
ISPDSL-II.

3) EVALUATION WITH ISPDSL-II
ISPDSL-II is the second largest traceset that we have used in
this work. Fig. 21 depicts the RMSE for the initial 100 epochs.
The average RMSE obtained for ISPDSL-II for all the four
predictions (Bpp, bps, pps, and duration) is 0.148234. Fig. 19
illustrates the Mean Absolute Error for 100 epochs. The aver-
ageMAE for all the four predictions (Bpp, bps, pps, and dura-
tion) is 0.023517. Compared toWaikato-VIII, we observe that
the RMSE andMAE of ISPDSL-II are relatively lower. How-
ever, WIDE-18 still has the lowest RMSE and MAE, which
can be attributed to its large size which increases the training
size. Having large data to train increases the performance of
the trained model.

Fig. 23 depicts the actual and predicted values for all the
four network traffic parameters. Fig. 23a and Fig. 23b com-
pares the bit-rate as well as the packet rate of the predicted
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FIGURE 17. Comparison between predictions and the actual network values of WIDE-18 dataset for: (a) The bit rate (b) The packet rate (c) The
number of bytes per packet (d) Duration of the flow.

FIGURE 18. The Root Mean Square Error between the actual value and
forecasted value for Waikato-VIII.

and observed values for 100 seconds. The maximum differ-
ence in the bit-rate is as small as 0.00003, and for packet
rate, it is 0.005. Fig. 23b illustrates the comparison of Bytes

FIGURE 19. The Mean Absolute Error between the actual value and
forecasted value for Waikato-VIII.

per packet and Fig. 23c shows the duration of the flow.
The observed duration of the flows differs from the actual
flow by a maximum of 0.2 unit packets. From the RMSE
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FIGURE 20. Comparison between predictions and the actual network values of Waikato-VIII dataset for: (a) The bit rate (b) The packet rate (c) The
number of bytes per packet (d) Duration of the flow.

FIGURE 21. The Root Mean Square Error between the actual value and
predicted value for ISPDSL-II.

andMAE values, we can infer that the difference between the
predicted values and observed values are small and remains
deep in the acceptable range.

FIGURE 22. The Mean Absolute Error between the actual value and
predicted value for ISPDSL-II.

C. EVALUATION OF THE DLNTC COMPONENT
The DLNTC Component is responsible for identifying the
application protocol names of each flow. This enables us
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FIGURE 23. Comparison between predictions and the actual network values of ISPDSL-II dataset for: (a) The bit rate (b) The packet rate (c) The
number of bytes per packet (d) Duration of the flow.

to calculate the amount of bandwidth and proper routes as
per the requirement. Moreover, it enables the detection of
malicious packets and malware that negatively affect the
quality of the networks as discussed in V. In this module,
we use a Deep Neural Network (DNN) to train the deep
model using training data. The trained model will be used for
classifying incoming flows to various categories. The Classi-
fication based Deep Learning Model was implemented using
Tensorflow [140].

The implemented model has one input layer of size 17 and
one output layer. The size of the output layer is dependent
upon the number of unique application protocol in each
dataset. We have five hidden layers between the input and
output layers. The size of each hidden layer is 200, 175, 150,
100, and 10. The size of hidden layers was chosen after trial
and error experiments.

For the training purpose, we divide the data into two splits
of 60/40. Sixty percentage of the data is used for training, and
the remaining forty percent is used for the prediction (testing).

We assess the performance of our classification model using
two metrics, accuracy and kappa(). They are defined in as
in (3) and (4) respectively.

accuracy(%) = num_accurate
|dataset| ⇥ 100 (3)

The accuracy is defined as the ratio of the number of cor-
rectly predicted application protocol classes (num_accurate)
to the total number of application flows in the dataset
(|dataset|).  is an index that compares the observed agree-
ment with respect to a baseline agreement called the expected
agreement [141]. The  is defined as follows

 = accuracyo � accuracye
1 � accuracye

| 2 [0, 1] (4)

where accuracyo is the observed accuracy (observed agree-
ment) that we calculated as part of (3). accuracye is the
expected accuracy or the random accuracy. We can define
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accuracye as in (5)

accuracye = TN (FP+ FN ) + TP(FN + FP)
accuracyo ⇥ accuracyo

(5)

where TN, TP, FP, and FN are the number of true negatives,
the number of true positives, the number of false positives,
and the number of false negatives respectively.

A universally acceptable interpretation of  does not exist.
However, Landis and Koch provided an interpretation in
which, a  closer to 1 signifies a considerable agreement
between the observed and expected observation. The farther
 is from 1, it ranges from slight agreement to no agreement.

TABLE 3. Accuracy and Kappa for the classifiers.

Table 3 provides the average accuracy and kappa obtained
from twenty rounds of the experiment. Waikato-VIII pro-
vides the highest accuracy of 98.5% and the highest kappa
value (0.95). The total number of unique application pro-
tocols in Waikato-VIII was lesser than WIDE=18 and
ISPDSL-II as Waikato-VIII was captured at the edge of
the network. Moreover, Waikato-VIII had a better dis-
tribution of application protocols than WIDE=18 and
ISPDSL-II. ISPDSL-II is close behind Waikato-VIII with
an accuracy of 97.39% (The difference is just 1%).
However, the Kappa value of ISPDSL-II is much lower.
This is because the majority of network flows distributed
among very few application protocols. This results in the
accuracye to go down even for few misclassifications of
the smaller application protocols. Whereas, WIDE-18 has an
accuracy of 90.51%. A large number of unique application
protocol(more than 150) results in misclassification of labels
with smaller share among the application protocol. However,
the overall accuracy and  value illustrate the high quality of
our classifier.

Fig. 24 depicts the variation in the accuracy with respect to
the training data size. As the training size increases, we can
observe an increase in the classification accuracy for all three
datasets. The rate of accuracy increment is higher for the
WIDE-18 datasets as the training size increases due to a
large number of records in this dataset (183 million packets).
Hence, a larger training set is required to produce higher
accuracy. However, ISPDSL-II and Waikato-VIII are smaller
than WIDE-18. Moreover, Waikato-VIII has lesser num-
ber of unique application protocols (labels). This results in
Waikato-VIII having the highest accuracy.

Fig. 25 illustrates the variation in the Kappa () with
respect to the training size. As the training size increases,
we can observe an increase in the  for all three datasets.
ISPDSL-II has the highest rate of increase in  as the training
size increase. Whereas, both WIDE-18 and Waikato-VIII

FIGURE 24. Accuracy of the DLNTC component for all the three datasets
used against the training size.

FIGURE 25. Kappa of the DLNTAP component for all the three datasets
used against the training size.

increases gradually as the training size increases. However,
we see that all the  values indicate a good agreement of
observed values expected values.

D. EVALUATION OF THE FCA COMPONENT
The traffic flows of a given application protocol will have
different flow types. For e.g., a flow that has been classi-
fied as Youtube by our classification component can either
be a video streaming flow, browsing flows, or flows gen-
erated by redirections between various content servers of
Google and Youtube [130], [131]. An analysis of these flow
classes of a single application protocol will give more control
on scheduling and better utilizing the network. After the
classification component classifies the flows into application
protocol classes, we apply DBSCAN clustering to analyze the
flows further.

In this experiment we segregated all the flows that have
application protocol Skype and Google Drive into separate
datasets. For both of these application protocols, we calcu-
lated the three nearest neighbor distance. Fig. 26 and Fig. 27
are the plots of the three nearest neighbor (3-NN) distance
with respect to the points sorted by the distance for Skype and
Google Drive respectively.
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FIGURE 26. The plot of three nearest neighbor against the points sorted
by the distance for the application protocol Skype.

FIGURE 27. The plot of three nearest neighbor against the points sorted
by the distance for the application protocol Google Drive.

The knee point indicated in the figure helps us in selecting
the best ✏ parameter required by the DBSCAN algorithm. The
red dashed line indicates the knee values. For Skypewe select
✏ = 2 and for Google Drive we select ✏ = 3 as shown in the
figure.

The selected ✏ is used to cluster both Skype and Google
Drive sets. Fig. 28a and Fig. 28b illustrates the results of the
clustering.We can observe that in Fig. 28a that Skypeflow has
been clustered into two clusters and in Fig. 28b we observe
that Google Drive has been divided into three clusters. The
flows for each application set were manually analyzed.

Skype has a decentralized architecture in which the
clients (host nodes) connect to one of the many supernodes
for registering with login servers [142], [143]. They keep
exchanging keep-alivemessages continuously. Hence, we can
infer that one of the clusters corresponds to the control signals
that handles connection and authentication between hosts and
primary servers. This group would hence have low volume
data flow. The second flow cluster is associated with the
actual audio and video communication data and hence has a
higher volume and packet rate. In the Fig. 28a, the blue cluster

is denser and contains more points and hence is associated
with the data flow, whereas the second yellow cluster is sparse
with few points indicating control signals. The black dots
in the figure indicates the anomalous traffic or the unknown
traffic that was identified.

Similarly, analyzing the Google Drive flows indicated the
presence of three clusters, one for the downloaded data, one
for the uploaded data, and the third one was browsing. The
download and upload clusters will be denser and bigger due
to the larger volume of data whereas the cluster with the
control signals will be smaller and of low volume. In Fig. 28b,
we observe that the blue and yellow clusters are denser and
have more points and hence corresponds to the download and
upload flow. Whereas, the grey cluster is smaller and might
correspond to the flows generated by browsing Google drive.
Similarly, the black dots in the figure indicates the anomalous
traffic or the unknown traffic that was identified.

Clustering and identifying the subclasses of the flows will
enable to have more control over planning the routes as well
as stopping anomaly based attacks.

VII. UbeHealth: EVALUATION OF THE WHOLE SYSTEM
In this section, we evaluate the performance of our proposed
mobile preventive healthcare cloud architecture using simu-
lation environments. We start by explaining the case study
and simulation scenario using the proposed network based
on mobile health cloud network between different hospitals
in Kingdom of Saudi Arabia. Then we discuss the simula-
tion environment and the parameters used in the simulation.
We then evaluate our proposed framework using the simu-
lated cloud healthcare network.

A. CASE STUDY WITH PROTOTYPE
In this case study, we design a scenario in which we imple-
ment a mobile healthcare networking framework that we pro-
posed among the various hospitals in Saudi cities. We create
two scenarios, one that deals with intra-network and one
that deals with inter-network between the cities. In the first
scenario, we consider the city of Riyadh, the capital of KSA.

Fig. 29 shows some of the major hospitals in the city of
Riyadh. We deploy cloudlets at four of the major hospitals:
(1) National hospital, (2) King Faisal Specialist Hospital,
(3) King Fahad Medical City, and (4) Riyadh military Hospi-
tal as seen in the Fig. 29 (shown with the clouds in the figure).
We assume our central server is installed at the King Fahad
Medical City as indicated in the figure. We assume that all of
the hospitals have the same network and application environ-
ment. The number of cloudlets deployed is also assumed to be
same at all the hospital and is explained in the next subsection
with the simulation parameters. Even though the hospital
names used are real, this is a case study with simulation.
Hence, the networks, applications, and all related data are
generated by the authors with the help of a cloud simulator to
evaluate the performance of the proposed preventive mobile
healthcare network cloud architecture. Hence, we would like
to provide a disclaimer that the hospital names are used for
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FIGURE 28. Clustering of (a) application flows marked as Skype (b) application flows marked as Google Drive.

FIGURE 29. Map of Riyadh with Hospitals showing the deployed cloudlets and the cloud server at various hospitals.

a better explanation. Therefore, the hospitals have no lia-
bility and will not be held accountable for anything in this
article.

In the second scenario, two hospitals in each of the
cities Riyadh, Jeddah, Dammam, and Abaha have cloudlets
installed, and the central server is at Riyadh. Hence the total
number of hospitals involved in this mobile healthcare net-
work is eight. Fig. 30 illustrates this scenario. Users at one
hospital in a city have to access the main server situated at
Riyadh. In this scenario, we show the performance of our pro-
posed scheme for inter-city data streaming. In our simulation,

we compare the performance of our proposed mobile cloud
preventive healthcare architecture with the traditional net-
work and cloud infrastructure.

The healthcare practitioners at the hospitals will be using
medical applications, monitoring patients health, or perform-
ing remote assistance for surgery. We simulate data that
represent streaming multimedia applications, FTP access,
and HTTP requests to complement with real world scenario.
We shall assess the network in terms of latency of the net-
work, and the power consumption of user devices. We com-
pare our work with [26] in which a healthcare network has
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FIGURE 30. Map of Saudi Arabia showing the deployed cloudlets and the
cloud server at hospitals in major cities around KSA.

been modeled to explore the QoS using a traditional network
infrastructure.

B. SIMULATION ENVIRONMENT
We develop our simulations on top of iCanCloud [144], [145]
a cloud simulator. iCanCloud can model and simulate cloud
computing systems. It can simulate large experiments unlike
other existing cloud simulators as it is written C++. It runs
on 32 or 64-bit system and can use the entire system memory
unlike other simulators developed in Java. Cloud computing
scenarios can be developed using set pre-existing components
provided by iCanCloud. These pre-existing components rep-
resent the working and behavior of real components such as
the disk, networks, memory, the file system, the nodes, etc.
More components can be added to the existing components
of iCanCloud based on the requirements. It also provides a
POSIX API which can be used to develop our implementa-
tion. We integrate our Deep Learning based components to
the simulation environment such that the results from these
components are also simulated.

The network parameters that we have used in this work
have been illustrated Table 4. For the intra-city scenario,
we deploy 15 cloudlets at each hospital, and each cloudlet
has five internal servers. The total number of users in each
hospital campus was set to 150. The service rate for the
cloudlets, as well as the clouds, are set to 15. The Inter-
net delay has been set to o.8 for inter-city networks and
0.5 for intra-city networks. The task arrival rate changes
between 0 to 5.

C. RESULTS
In this subsection, we discuss the results of the simulation
using the discussed scenarios.

TABLE 4. The simulation parameters used to simulate the mobile edge
based cloud healthcare system using proposed framework.

FIGURE 31. The change in total energy as with respect to the simulation
time for the proposed model and traditional cloud infrastructure.

Fig. 31 illustrates the total energy that was consumed for
the simulation of the intercity scenario for our prosed tech-
nique as well as the traditional infrastructure-based health
network. As the time increases, we observe that the traditional
infrastructure requires a more considerable amount of energy
and the rate of increase in energy be far greater than our pro-
posed method. Whereas, our method utilizes a lesser amount
of energy. This is mainly due to the caching and fast access
provided by the cloudlets as well as network optimizations
that are enabled by our deep learning models.

FIGURE 32. The latency of Intercity and Intracity networks for the
proposed technique and traditional cloud infrastructure.

Fig. 32 depicts the average latencies of the intercity and
intracity networks for both the proposed technique as well
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as the traditional healthcare infrastructure. We can observe
that the average latency of the proposed healthcare tech-
nique is lower than the traditional network-based healthcare
infrastructure. The proposed technique provides an average
latency of 154 milliseconds (ms) and 308.33 ms for intracity
and intercity networks respectively. Whereas, traditional net-
working approach provides a latency of 450 ms and 900 ms
for intracity and intercity networks respectively.

The latency of the proposed technique is 37% and 50%
less than traditional infrastructure for intracity and intercity
healthcare networks. The higher performance of our tech-
nique is due to the caching at the cloudlets and adaptively
resource management enabled by our deep learning model.

VIII. CONCLUSIONS AND OUTLOOK
Advancements in ICT technologies such as 4G/5G commu-
nications, big data, IoT, HPC, robotics, cloud computing, and
smart cities are driving a major transformation of the health-
care industry. Another driver for this transformation is the
need for governments globally to make high quality health-
care accessible to the citizens, and this has been challenging
due to the increasing health issues among the populations, and
falling budgets. Networked healthcare aims to deliver any-
time anywhere healthcare services, remotely, or otherwise,
regardless of the location of patients and their mobilities.
Mobile cloud computing could potentially meet the future
healthcare demands by enabling anytime, anywhere capture
and analyses of data. However, network latency, bandwidth,
and reliability are among the many challenges hindering the
realization of next-generation healthcare.

In this paper, we proposed UbeHealth, a ubiquitous health-
care framework that leverages edge computing, deep learn-
ing, big data, high performance computing (HPC), and the
Internet of Things (IoT) to address the very many challenges
hindering the networked healthcare domain. We addressed
the networking challenges such as latency, bandwidth, energy
consumption and other QoS parameters, faced by networked
healthcare systems. The framework enabled an enhanced
network quality of service using its four layers and three com-
ponents. The DLNTAP Component used deep learning, big
data, and HPC technologies to predict network traffic for the
future in order to optimize data rates, data caching and routing
decisions. The DLNTC Component provided classification
of the application protocols of the traffic flows allowing
UbeHealth to better meet the communication requirements
of applications in order to maintain a high QoS and to detect
malicious traffic and anomalous data. The FCA Component
clustered the data to identify the different kinds of data orig-
inating from the same application protocols. IoT allowed the
collection and monitoring of the patient’s biomedical signals
and activities.

A proof of concept UbeHealth systemwas developed based
on the proposed framework. A detailed literature review was
used to capture the design requirements for the proposed
system. The system was described including the algorithmic
implementation of the components and layers. A nationwide

networked healthcare system case study and three widely
used datasets were used to evaluate the UbeHealth system.
The proposed system provided 50% reduction in latency as
compared to traditional cloud-based networked healthcare
systems. To the best of our knowledge, this is the first
work that extensively addresses the various network-related
issues in next-generation healthcare systems using adaptive
deep learning and data mining techniques to enhance QoS.
In future, we plan to work on improving the security, privacy,
reliability, and scalability of the networked healthcare sys-
tems using deep learning based models.
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